[Turkmath:7364] Cebir-Geometri Günleri, 24-25-26 Aralık 2010, TÜBİTAK - FEZA GÜRSEY ENSTİTÜSÜ
Kursat Aker
aker at gursey.gov.tr
13 Ara 2010 Pzt 12:28:27 EET
Cebir-Geometri Günleri
24-25-26 Aralık 2010
TÜBİTAK - FEZA GÜRSEY ENSTİTÜSÜ
/Konuşmaların Dili:/ Cebir-Geometri Günlerinde konuşmaların dili,
olabildiğince /Türkçe/ olacak. Bazı konuşmaların tümü ya da bazı
kısımları İngilizce olması olasıdır.
*Konuşmacılar:*
* Mahir Bilen Can, Tulane Üniversitesi
* Kıvanç Ersoy, Mimar Sinan Güzel Sanatlar Üniversitesi ve Salerno
Üniversitesi
* Sevgi Harman, İTÜ
* Refik Keskin, Sakarya Üniversitesi
* Celal Cem Sarıoğlu, DEÜ, GSÜ, FGE
* Ayberk Zeytin, ODTÜ
*24 Aralık 2010, Cuma*
/Lisans Öğrencileri Günü/
* *Ayberk Zeytin:* Did Galois know that women belong to outer space?
We will try to make a completely elementary introduction to Galois
action on algebraic curves defined over number fields. We will
state open problem as we proceed. The talk is aimed towards
undergraduate students, thus only basic knowledge of complex
analysis and algebra will be assumed.
* *Mahir Bilen Can:*
* *Kıvanç Ersoy:* Cebirsel gruplar ve Lie tipi basit gruplar
In this talk we will give some basic notions of the theory of
algebraic groups. An algebraic group is an algebraic variety,
which is also a group where the group operations are also variety
morphisms. We will give basic definitions related to the subject,
briefly mention about the conjugacy classes of semisimple and
unipotent elements. We will explain the relations between
algebraic groups and simple groups of Lie type. We will present
some important results on the subject, mainly related to the
classification of finite simple groups.
*25 Aralık 2010, Cumartesi*
* *Kıvanç Ersoy:* Çözülebilir olmayan, sonsuz Camina grupları
Let G be a group. An element aG is called an anticentral element
if aG=aG. A non-perfect group is called a Camina group if every
element xGGis anticentral. Finite groups containing an anticentral
element are solvable by a result of F. Ladisch \cite{ladisch}. In
this work, we will prove some results on infinite locally finite
Camina groups and we will give a method to construct infinite
non-solvable Camina groups. Indeed, we will prove that for each
connected algebraic group, there are countably many non-isomorphic
infinite non-locally solvable Camina groups.
This is an ongoing study under the supervision of Prof. Mercede
Maj and Prof. Patrizia Longobardi of University of Salerno. This
study is supported by TÜBİTAK BİDEB 2219 International Post
Doctoral Research Fellowship. The speaker thanks TÜBİTAK for the
support.
* *Mahir Bilen Can:* Unipotent invariant (complete) quadrics
The variety of complete quadrics, which is used by Schubert in his
famous computation of the number of space quadrics tangent to 9
quadrics in general position, is a particular compactification of
the space of non-singular quadric hypersurfaces in n dimensional
complex projective space.
In this talk, towards a theory of Springer fibers for complete
quadrics, I will describe our recent work on the unipotent
invariant complete quadrics. These results involve interesting
combinatorics, and in particular, give a new q-analog of Fibonacci
numbers as the Poincare polynomial of a unipotent fixed subvariety
of quadrics.
This is joint work with Michael Joyce.
* *Refik Keskin:* Fibonacci and Lucas congruences and their
applications
In this paper we obtain some new identities containing Fibonacci
and Lucas numbers. These identities allow us to give some
congruences concerning Fibonacci and Lucas numbers such as;
L2mn+k−1m+1nLkmod Lm, F2mn+k−1m+1nFkmod Lm, L2mn+k−1mnLkmod Fmand
F2mn+k−1mnFkmod Fm. By the achieved identities, divisibility
properties of Fibonacci and Lucas numbers are given. Then it is
proved that there is no Lucas number Lnsuch that Ln=L2ktLmx2for m1
and k1. Moreover it is proved that Ln=LmLris impossible if m and
rare positive integers greater than 1. Moreover, a conjecture
related to the subject is given.
*Keywords:* Fibonacci numbers; Lucas numbers; Cogruences.
*References:*
o D. M. Burton, /Elementary Number Theory/, McGraw -Hill Comp.
Inc., 1998.
o J. H. E. Cohn, /On Square Fibonacci Numbers/, J. Lond. Math.
Soc., 39 (1964), 537-540.
o J. H. E. Cohn, /Square Fibonacci Numbers, etc./, Fibonacci
Quarterly, 2 (1964), 109-113.
o M. Farrokhi D. G., /Some Remarks On The Equation/ Fn=kFm/In
Fibonacci Numbers/, Journal of Integer Sequences, 10 (2007),
1-9.
o R. Keskin and B. Demirturk, /Some New Fibonacci and Lucas
Identities by Matrix Methods,/International Journal of
Mathematical Education in Science and Technology. (accepted
for publication)
o T. Koshy, /Fibonacci and Lucas numbers with applications/ ,
John Wiley and Sons, Proc., New York-Toronto, 2001.
o I. Niven, H. S. Zuckerman, and H. L. Montgomery, /An
Introduction to the Theory of Numbers/, John Wiley & Sons,
Inc., Canada, 1991.
o N. Robbins, /Fibonacci numbers of the form/ px2/, where/ p
/is prime/, Fibonacci Quarterly, 21 (1983), 266-271.
o N. Robbins, /Fibonacci numbers of the form/ cx2/, where/
1c1000, Fibonacci Quarterly 28 (1990), 306-315.
o N. Robbins, /Lucas numbers of the form/ px2/, where/ p/is
prime/, Inter. J. Math. Math. Sci. 14 (1991), 697-703.
o S. Vajda, /Fibonacci and Lucas numbers and the golden
section/, Ellis Horwood Limited Publ., England, 1989.
o C. Zhou, /A general conclusion on Lucas numbers of the form/
px2/where/ p/is prime/, Fibonacci Quarterly 37 (1999), 39-45.
* *Ayberk Zeytin:* Combinatorics and Cohomology
For the sake of understanding the absolute Galois group many
sophisticated methods are/have been used. Among them combinatorial
ones have proven themselves to be useful. In this talk, we will
begin with combinatorial objects, triangulations/quadrangulations,
and then realise them as classes in some cohomology group, which
we will try to describe explicitly.
*26 Aralık 2010, Pazar*
* *Sevgi Harman:* Radically perfect prime ideals in commutative rings
* *Celal Cem Sarıoğlu:* Orbifold Riemann yüzeyleri ve jeodezik
fonksiyonlar
*Konaklama:*
Cebir-Geometri Günlerine katılacak katılımcılardan isteyenler (İstanbul
içi ya da dışı) TÜBİTAK - Feza Gürsey Enstitüsü'nde ücretsiz olarak
konuk edilecektir. Düzenlemenin en sağlıklı şekilde yapılması için
İstanbul içinden ya da dışından gelecek tüm katılımcıların başvuru
formunu doldurması gereklidir.
*Konaklama tarihleri:* 23 - 26 Aralık 2010
*Kontenjan: 30 kişi*
*Program, Istanbul Matematik Gündemindedir:*
http://www.google.com/calendar/embed?src=jdf754c331751cbt6q9vc281es%40group.calendar.google.com&ctz=Europe/Istanbul
<http://www.google.com/calendar/embed?src=jdf754c331751cbt6q9vc281es%40group.calendar.google.com&ctz=Europe/Istanbul>
*Başvuru için:* http://www.gursey.gov.tr/apps/app-frm-gen.php?id=algeo1012
*Son başvuru tarihi:* 21 Aralık 2010
*Programda konuşma vermek için lütfen iletişime geçiniz. *
*Düzenleyiciler:*
Celal Cem Sarıoğlu, DEÜ
Kürşat Aker, FGE
*Web sayfası:* http://www.gursey.gov.tr/new/algeo1012/
*İletişim:* aker at gursey.gov.tr <mailto:aker at gursey.gov.tr>
------------------------------------------------------------------------
Cebir-Geometri Günleri
-------------- sonraki bölüm --------------
Bir HTML eklentisi temizlendi...
URL: <http://yunus.listweb.bilkent.edu.tr/cgi-bin/mailman/private/turkmath/attachments/20101213/1833f451/attachment-0001.htm>
-------------- sonraki bölüm --------------
A non-text attachment was scrubbed...
Name: char32.png
Type: image/png
Size: 186 bytes
Desc: kullanılamıyor
URL: <http://yunus.listweb.bilkent.edu.tr/cgi-bin/mailman/private/turkmath/attachments/20101213/1833f451/attachment-0011.png>
-------------- sonraki bölüm --------------
A non-text attachment was scrubbed...
Name: char30.png
Type: image/png
Size: 120 bytes
Desc: kullanılamıyor
URL: <http://yunus.listweb.bilkent.edu.tr/cgi-bin/mailman/private/turkmath/attachments/20101213/1833f451/attachment-0012.png>
-------------- sonraki bölüm --------------
A non-text attachment was scrubbed...
Name: char6E.png
Type: image/png
Size: 184 bytes
Desc: kullanılamıyor
URL: <http://yunus.listweb.bilkent.edu.tr/cgi-bin/mailman/private/turkmath/attachments/20101213/1833f451/attachment-0013.png>
-------------- sonraki bölüm --------------
A non-text attachment was scrubbed...
Name: char11.png
Type: image/png
Size: 138 bytes
Desc: kullanılamıyor
URL: <http://yunus.listweb.bilkent.edu.tr/cgi-bin/mailman/private/turkmath/attachments/20101213/1833f451/attachment-0014.png>
-------------- sonraki bölüm --------------
A non-text attachment was scrubbed...
Name: char00.png
Type: image/png
Size: 202 bytes
Desc: kullanılamıyor
URL: <http://yunus.listweb.bilkent.edu.tr/cgi-bin/mailman/private/turkmath/attachments/20101213/1833f451/attachment-0015.png>
-------------- sonraki bölüm --------------
A non-text attachment was scrubbed...
Name: char01.png
Type: image/png
Size: 191 bytes
Desc: kullanılamıyor
URL: <http://yunus.listweb.bilkent.edu.tr/cgi-bin/mailman/private/turkmath/attachments/20101213/1833f451/attachment-0016.png>
-------------- sonraki bölüm --------------
A non-text attachment was scrubbed...
Name: char00.png
Type: image/png
Size: 160 bytes
Desc: kullanılamıyor
URL: <http://yunus.listweb.bilkent.edu.tr/cgi-bin/mailman/private/turkmath/attachments/20101213/1833f451/attachment-0017.png>
-------------- sonraki bölüm --------------
A non-text attachment was scrubbed...
Name: char01.png
Type: image/png
Size: 155 bytes
Desc: kullanılamıyor
URL: <http://yunus.listweb.bilkent.edu.tr/cgi-bin/mailman/private/turkmath/attachments/20101213/1833f451/attachment-0018.png>
-------------- sonraki bölüm --------------
A non-text attachment was scrubbed...
Name: char3E.png
Type: image/png
Size: 175 bytes
Desc: kullanılamıyor
URL: <http://yunus.listweb.bilkent.edu.tr/cgi-bin/mailman/private/turkmath/attachments/20101213/1833f451/attachment-0019.png>
-------------- sonraki bölüm --------------
A non-text attachment was scrubbed...
Name: char15.png
Type: image/png
Size: 191 bytes
Desc: kullanılamıyor
URL: <http://yunus.listweb.bilkent.edu.tr/cgi-bin/mailman/private/turkmath/attachments/20101213/1833f451/attachment-0020.png>
-------------- sonraki bölüm --------------
A non-text attachment was scrubbed...
Name: char14.png
Type: image/png
Size: 202 bytes
Desc: kullanılamıyor
URL: <http://yunus.listweb.bilkent.edu.tr/cgi-bin/mailman/private/turkmath/attachments/20101213/1833f451/attachment-0021.png>
Turkmath mesaj listesiyle ilgili
daha fazla bilgi