[Turkmath:7437] Re: Cycles in İstanbul March 28 - April 2, 2011 TÜBİTAK - FEZA GÜRSEY INSTITUTE
Muhammed Uludag
muhammed.uludag at gmail.com
25 Oca 2011 Sal 17:24:07 EET
Cycles in İstanbul İstanbul'un gördüğü en seviyeli toplantılardan biri
olacak...
Düzenleyenlere candan teşekkürler..
--
A. M. Uludag
http://math.gsu.edu.tr/uludag/
2011/1/25 Kursat Aker <aker at gursey.gov.tr>
> Cycles in İstanbul March 28 - April 2, 2011
>
> TÜBİTAK - FEZA GÜRSEY INSTITUTE
>
> *Speakers:*
>
> - Alexander Beilinson, University of Chicago
> - Spencer Bloch
> - Hélène Esnault, Universität Duisburg-Essen
> - Moritz Kerz, Universität Duisburg-Essen
> - Marc Levine, Universität Duisburg-Essen
> - Sinan Ünver, Koç Üniversitesi
>
> *Lectures:*
>
> - *Infinitesimal Cycles* *by* Spencer Bloch, Hélène Esnault, Moritz
> Kerz
>
> *Kerz:* *Characteristic Zero*:
> Lifting Cycle Classes: The formal lifting, algebraization theorems (out
> of reach), base field of higher transcendence degree, relaton to the
> relative Hodge conjecture.
>
> *Esnault:* *Basic global facts*:
> Existence of crystalline cohomology with frobenius, iso. crystalline =
> DR of lifting, Hodge filtration, cycle class, canonical filtration, slopes.
>
> *Bloch:* DR-Witt cohomology, DR-W dilogarithm, results of
> Illusie-Raynaud.
>
> *Kerz:* Facts about Milnor K-theory, syntomic complexes.
>
> *Bloch and Esnault:* Discussion of proof.
>
> *References:*
> 1. Illusie, L.: Complexe de de Rham-Witt et cohomologie cristalline,
> Annales ENS 12 (1979), 501-661.
> 2. Bloch, S.: Semi-regularity and de Rham cohomology, Inventiones 17
> (1972), 51-66.
> 3. Berthelot, P., Ogus, A., F-isocrystals and de Rham cohomology I,
> Inv. Math 72, 159-199 (1983).
> 4. Mazur, B., Frobenius and the Hodge filtration, Ann. Math. 98, no.
> 1, 58-95 (1973).
> 5. Gros, M., Classes de Chern et classes de cycles en cohomologie de
> Hodge-Witt logarithmique, Mémoires de la S.M.F. 2e série, t. 21
> (1985), p. 1-87.
>
> - *Algebraic Cobordism* *by* Marc Levine
>
> Algebraic cobordism is an algebraic version of the theory of complex
> cobordism, just as the Chow ring is an algebraic version of singular
> cohomology. We will give a description of the construction of algebraic
> cobordism and its basic properties, following the original construction of
> Levine and Morel, as well as the more geometric presentation by Levine and
> Pandharipande. Besides outlining a number of computations, we will discuss a
> wide range of applications, including Riemann-Roch theorems, degree formulas
> and their applications to incompressibility, cobordism motives, as well as
> applications to Gromov-Witten theory and Donaldson-Thomas theory.
>
> *Main References:*
> 1. Levine, M.; Pandharipande, R., Algebraic cobordism revisited.
> Invent. Math. 176 (2009), no. 1, 63130.
> 2. Levine, M.; Morel, F., Algebraic cobordism. Springer Monographs
> in Mathematics. Springer, Berlin, 2007. xii+244 pp.
>
> *Supplementary References:*
> 1. Baptiste Calmès, Victor Petrov, Kirill Zainoulline, Invariants,
> torsion indices and oriented cohomology of complete flags arXiv:0905.1341
> 2. Brosnan, Patrick, Steenrod operations in Chow theory. Trans.
> Amer. Math. Soc. 355 (2003), no. 5, 18691903.
> 3. Coates, Tom; Givental, Alexander, Quantum cobordisms and formal
> group laws. The unity of mathematics, 155171, Progr. Math., 244, Birkhauser
> Boston, Boston, MA, 2006.
> 4. Dai, Shouxin, Algebraic cobordism and Grothendieck groups over
> singular schemes. Homology, Homotopy Appl. 12 (2010), no. 1, 93110
> 5. Jens Hornbostel, Valentina Kiritchenko, Schubert calculus for
> algebraic cobordism. arXiv:0903.3936
> 6. Y.-P. Lee, R. Pandharipande, Algebraic cobordism of bundles on
> varieties. arXiv:1002.1500
> 7. Levine, Marc, Comparison of cobordism theories. J. Algebra 322
> (2009), no. 9, 32913317
> 8. Levine, Marc, Oriented cohomology, Borel-Moore homology, and
> algebraic cobordism. Special volume in honor of Melvin Hochster. Michigan
> Math. J. 57 (2008), 523572
> 9. Levine, Marc, Steenrod operations, degree formulas and algebraic
> cobordism. Pure Appl. Math. Q. 3 (2007), no. 1, part 3, 283306.
> 10. Merkurjev, Alexander, Steenrod operations and degree formulas.
> J. Reine Angew. Math. 565 (2003), 1326.
> 11. Anatoly Preygel, Algebraic cobordism of varieties with
> G-bundles. arXiv:1007.0224
> 12. Quillen, Daniel, Elementary proofs of some results of cobordism
> theory using Steenrod operations. Advances in Math. 7 1971 2956 (1971).
> 13. Quillen, Daniel, On the formal group laws of unoriented and
> complex cobordism theory. Bull. Amer. Math. Soc. 75 1969 12931298.
> 14. Semenov, N.; Zainoulline, K., Essential dimension of Hermitian
> spaces. Math. Ann. 346 (2010), no. 2, 499503.
> 15. Yu-jong Tzeng, A Proof of the Göttsche-Yau-Zaslow Formula.
> arXiv:1009.5371
> 16. Vishik, Alexander. Fields of u-invariant 2r+1. Algebra,
> arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, 661685, Progr.
> Math., 270, Birkhauser Boston, Inc., Boston, MA, 2009.
> 17. Vishik, A., Symmetric operations in algebraic cobordism. Adv.
> Math. 213 (2007), no. 2, 489552.
> 18. Vishik, A.; Yagita, N., Algebraic cobordisms of a Pfister
> quadric. J. Lond. Math. Soc. (2) 76 (2007), no. 3, 586604.
>
> - *P-adic periods and derived de Rham cohomology* *by* Alexander
> Beilinson
>
> A construction of the p-adic period map which uses Illusie's derived de
> Rham cohomology will be illustrated.
>
> *References:*
> 1. Faltings, G.: Almost etale extensions. Cohomologies p-adiques et
> applications arithmetiques, II. Asterisque No. 279 (2002), 185-270.
> 2. Illusie, L.: Complexe cotangent et deformations. I. Lecture Notes
> in Mathematics, Vol. 239. Springer-Verlag, Berlin-New York, 1971. xv+355 pp.
>
> 3. Illusie, L.: Complexe cotangent et deformations. II. Lecture
> Notes in Mathematics, Vol. 283. Springer-Verlag, Berlin-New York, 1972.
> vii+304 pp.
> 4. Illusie, L.: Cohomologie de de Rham et cohomologie etale
> p-adique, Seminaire Bourbaki 1989/90, Exp. 726, Asterisque 189-190, 1990, p.
> 325-374.
> 5. Niziol, W.: p-adic motivic cohomology in arithmetic.
> International Congress of Mathematicians. Vol. II, 459-472, Eur. Math. Soc.,
> Zürich, 2006.
> 6. Tsuji, T.: Semi-stable conjecture of Fontaine-Jannsen: a survey.
> Cohomologies p-adiques et applications arithmetiques, II. Asterisque No. 279
> (2002), 323-370.
>
> ------------------------------
>
> *Accommodation* (including breakfast, lunch) will be provided by Feza
> Gürsey Institute *Student Hostel* for participants from outside İstanbul
> if desired.
>
> *Travel funds* are *not* available for participants.
>
> *Program* is also featured on the Istanbul Mathematical Agenda:
> http://www.google.com/calendar/embed?src=jdf754c331751cbt6q9vc281es%40group.calendar.google.com&ctz=Europe/Istanbul
>
> All participants are encouraged to fill in the following *application form
> *. Filling in the form is essential for the TÜBİTAK - FEZA GÜRSEY
> INSTITUTE to provide the best service for all participants.
>
> *Number of participants is limited to 25 people.*
>
> *Deadline:* March 1, 2011
>
> *To Apply:* http://www.gursey.gov.tr/apps/app-frm-gen.php?id=cycles1103
>
> *Web site:* http://www.gursey.gov.tr/new/cycles1103/
>
> *Organizers:*
> Sinan Ünver (Koç Üniversitesi),
> Kürşat Aker (TÜBİTAK - Feza Gürsey Enstitüsü).
> *Contact:* sunver[]ku.edu.tr
> _______________________________________________
> Turkmath mailing list
> Turkmath at listweb.bilkent.edu.tr
> http://yunus.listweb.bilkent.edu.tr/cgi-bin/mailman/listinfo/turkmath
>
>
-------------- sonraki bölüm --------------
Bir HTML eklentisi temizlendi...
URL: <http://yunus.listweb.bilkent.edu.tr/cgi-bin/mailman/private/turkmath/attachments/20110125/4aedd5da/attachment-0001.htm>
Turkmath mesaj listesiyle ilgili
daha fazla bilgi