[Turkmath:7741] Differential Geometry May, 27 - 29, 2011 TÜBİTAK - FEZA GÜRSEY INSTITUTE

Kursat Aker aker at gursey.gov.tr
26 Mayıs 2011 Per 17:42:37 EEST


 Differential Geometry May 27 - 29, 2011

TÜBİTAK - FEZA GÜRSEY INSTITUTE

*Speakers:*

   - Mustafa Kalafat, Middle East Technical University
   - Barış Coşkunüzer, Koç University
   - Tekin Dereli, Koç University
   - Cenap Özel, Abant İzzet Baysal University
   - F. Muazzez Şimşir, Middle East Technical University

*Lectures:*

   - *Reidemeister torsion of Product Manifolds and Quantum Entanglement of
   Pure States with Schmidt Rank* *by* Cenap Özel

   Using symplectic chain complex, a formula for the Reidemeis- ter torsion
   of product of oriented closed connected even dimensional mani- folds is
   presented. In applications, the formula is applied to Riemann sur-
   faces,Grassmannians, Projective spaces and manifolds of pure bipartite
   states with Schmidt ranks.

   *References:*
   1. M. F. Atiyah and R. Bott, The Yang-Mills Equations over Riemann
      Surfaces, Phil. Trans. R. Soc. London Series A, 308 No. 1505 (1983),
      523-615.
      2. J.M. Bismut, H. Gillet, and C. Soule, Analytic torsion and
      holomorphic determinant bundles I. Bott-Chern forms and analytic torsion,
      Comm. Math. Phys. 115 No 1 (1988), 49-78.
      3. J.M. Bismut and F. Labourie, Symplectic geometry and the Verlinde
      formulas, in: S.T. Yau (Ed.), Surveys in di®erential geometry. Vol. V.
      Di®erential geometry inspired by string theory. Boston, MA: International
      Press. Surv. Di®er. Geom., Suppl. J. Di®er. Geom. 5 (1999), 97-311.
      4. T.A. Chapman, Hilbert cube manifolds and the invariance of
      Whitehead torsion, Bull. Amer. Math. Soc. 79(1973), 52-56.
      5. T.A. Chapman, Topological invariance of Whitehead torsion, Amer. J.
      Math. 96(1974), 488-497.
      6. G. de Rham, Reidemeister's torsion invariant and rotation of Sn;
      in: Di®erential Analysis, Tata Institute and Oxford Univ. Press, 1964,
      27-36.
      7. W. Franz, Uber die Torsion einer Uberdeckung, J. Reine Angew. Math.
      173(1935), 245-254.
      8. J. Grabowski, G. Marmo, and M. Kus, , Geometry of quantum systems:
      density states and entanglemen, J.Phys. A 38(2005), 10217-10244.
      9. J. Grabowski, M. Kus, and G. Marmo, Symmetries, group actions, and
      entanglement, Open Sys. and Information Dyn. 13(2006), 343-362.
      10. P. Griffiths and J. Harris, Principles of Algebraic Geometry, John
      Willey Library Edition, 1994.
      11. A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
      12. R.C. Kirby and L.C. Siebenmann, On triangulation of manifolds and
      Haupvermutung, Bull. Amer. Math. Soc. 75(1969), 742-749.
      13. V.I. Man'ko, G. Marmo, E.C.G. Sudarshan, and F. Zaccaria,
      Di®erential geometry of density states and entanglement, Rep. Math. Phys.
      55(2005), 405-422.
      14. J.P. May, A Concise Course in Algebraic Topology, The University
      of Chicago Press, 1999.
      15. J. Milnor, A duality theorem for Reidemeister Torsion, Ann. Math.
      (1962), 137-147.
      16. J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72(1966),
      358-426.
      17. J. Milnor, Infinite cyclic covers, in: Topology of Manifolds in
      Michigan, 1967, 115-133.
      18. J. Porti, Torsion de Reidemeister pour les Varieties
      Hyperboliques, Mem. Amer. Math. Soc., 1997.
      19. K. Reidemeister, Homotopieringe und LinsenrÄaume, Abh. Math. Sem.
      Univ. Hamburg 11(1935), 102-109.
      20. Y. Sozen, On Reidemeister torsion of a symplectic complex, Osaka
      J. Math. 45(2008), 1-39.
      21. Y. Sozen, On Fubini-Study form and Reidemeister torsion, Topology
      and its Applications, 156 (2009), 951-955.
      22. Y. Sozen, A note on Reidemeister torsion and period matrix of
      Riemann surfaces, Math. Slovaca, 61 No. 1 (2011), 29-38.
      23. Y. Sozen, Symplectic Chain Complex, Reidemeister torsion, compact
      manifolds, submitted.
      24. E. Witten, On quantum gauge theories in two dimensions, Comm.
      Math. Phys. 141(1991), 153-209.
      25. Z. Yu, X. Jost-Li, Q. Li, J. Lv., and S. Fei, Differential
      Geometry of bipartiate quantum states, Rep. Math. Phys. 60 No. 1 (2007),
      125-133.
   - *Non-Abelian Magnetic Monopoles and Electric-Magnetic Duality*
*by*Tekin Dereli

   I will first present the U(1) gauge theory structure of Maxwell equations
   and discuss the definition of conserved charges. After a few comments on the
   Dirac monopoles I will give SU(2) Yang-Mills-Higgs theory and discuss the 't
   Hooft-Polyakov monopole and dyon solutions. Finally I will introduce the
   Montonen-Olive conjecture (1978) and the corresponding electric-magnetic
   duality that led in 1994 to the Seiberg-Witten construction of topological
   invariants.

   *References:*
   1. G. 't Hooft, Nucl.Phys.B79 (1974)276
      2. E.B.Bogomol'nyi, Sov.J.Nucl.Phys. 24(1976)449
      3. C.Montonen, D.Olive, Phys.Lett. B72(1977) 117
      4. N.Seiberg,E.Witten, Nucl.Phys.B426 (1994)19; ibid, B430(1994)485
   - *Foliations of Hyperbolic Space by Constant Mean Curvature
   Hypersurfaces* *by* Barış Coşkunüzer

   In this talk, we will start with a survey of asymptotic Plateau problem.
   Then, we will show that the constant mean curvature surfaces in the
   hyperbolic 3-space spanning a star-shaped curve in the asymptotic sphere
   give a foliation of the hyperbolic 3-space. Then, we will talk about
   generalizations of these results in more general settings.

   *References:*
   1. M. Anderson, Complete minimal hypersurfaces in hyperbolic n-manifolds,
      Comment. Math. Helv. 58 (1983) 264-290.
      2. B. Coskunuzer, Foliations of Hyperbolic Space by Constant Mean
      Curvature Hypersurfaces, IMRN (2010) 1417-1431.
      3. B. Guan, and J. Spruck, Hypersurfaces of constant mean curvature in
      hyperbolic space with prescribed asymptotic boundary at
infinity, Amer. J.
      Math. 122 (2000) 1039-1060.
      4. R. Hardt and F.H. Lin, Regularity at infinity for absolutely area
      minimizing hypersurfaces in hyperbolic space, Invent. Math. 88 (1987)
      217-224.
      5. Y. Tonegawa, Existence and regularity of constant mean curvature
      hypersurfaces in hyperbolic space, Math. Z. 221 (1996) 591--615.
   - *Algebraic Surfaces and their applications to Differential Geometry 1 &
   2* *by* Mustafa Kalafat

   We will talk about complex algebraic surfaces, Kodaira-Enriques
   Classification, and their applications to 4-dimensional Riemannian geometry.
   In particular we will talk about the Kodaira Dimension and its relationship
   with the Yamabe Invariant.
   - *Non-divergence harmonic maps* *by* F. Muazzez Şimşir

   We describe work on solutions of certain non-divergence type and
   therefore non-variational elliptic and parabolic systems on manifolds. These
   systems include Hermitian and affine harmonics which should become useful
   tools for studying Hermitian and affine manifolds, resp. A key point is that
   in addition to the standard condition of nonpositive image curvature that is
   well known and understood in the theory of ordinary harmonic maps (which
   arise from a variational problem), here we also need in addition a global
   topological condition to guarantee the existence of solutions.

   *References:*
   1. S.I. Al'ber, Spaces of mappings into a manifold with negative
      curvature, Sov. Math. Dokl. 9 (1967), 6--9.
      2. S.Y. Cheng and S.T. Yau, The real Monge-Amp\`ere equation and
      affine flat structures, Differential Geometry and Differential Equations,
      Proc. Beijing Symp. 1980, 339--370, 1982.
      3. H.-Ch. Grunau and M.Kuhnel, On the existence of Hermitian-harmonic
      maps from complete Hermitian to complete Riemannian manifolds,
Math. Zeit.
      249 (2005), 297--325.
      4. J. Jost, Harmonic mappings between Riemannian manifolds, Canberra
      Univ. Press, 1984.
      5. J. Jost, Nonpositive curvature: Geometric and analytic aspects,
      Birkhauser, 1997.
      6. J. Jost, Riemannian geometry and geometric analysis, 5th ed.,
      Springer, 2008.
      7. J. Jost, Harmonic mappings, L.Z. Ji et al. (editors), Handbook of
      Geometric Analysis, International Press, 2008, 147--194.
      8. J. Jost and S.T. Yau, A nonlinear elliptic system for maps from
      Hermitian to Riemannian manifolds and rigidity theorems in Hermitian
      geometry, Acta Math. 170 (1993), 221--254.
      9. J. Jost and F.M. Simsir, Affine harmonic maps, Analysis 29 (2009),
      185--197.
      10. A. Milgram and P. Rosenbloom, Harmonic forms and heat conduction,
      I: Closed Riemannian manifolds, Proc. Nat. Acad. Sci. 37 (1951),
180--184.
      11. J. Milnor, On fundamental groups of complete affinely flat
      manifolds, Adv. Math. 25 (1977), 178--187.
      12. L. Ni, Hermitian harmonic maps from complete Hermitian to complete
      Riemannian manifolds, Math. Zeit. 232 (1999), 331--355.
      13. W. von Wahl, Klassische Losbarkeit im Grosen fur nichtlineare
      parabolische Systeme und das Verhalten der Losungen fur t, Nachr.
      Akad. Wiss. Gottingen, II. Math. - Phys. Kl., 131--177, 1981.
      14. W. von Wahl, The continuity or stability method for nonlinear
      elliptic and parabolic equations and systems, Rend. Sem. Mat.
Fis. Milano 62
      (1992), 157--183.
   - *On translation-like covering transformations* *by* F. Muazzez Şimşir

   The concept of "translation-like elements" of the group of covering
   transformations of a covering projection onto a compact space is defined. It
   is shown that the group of covering transformations of the universal
   covering projection of a compact Riemannian manifold with negative sectional
   curvatures admits no non-trivial translation-like elements.

   *References:*
   1. W. P. Byers, On a theorem of Preissmann , Proc. of the Amer. Math.
      Soc. 24 (1970), 50--51.
      2. P. Eberlein, Lattices in spaces of non-positive curvature, Annals
      of Math. 111 (1980), 435--476.
      3. M. Gromov, Almost flat manifolds, J. of Diff. Geo. 13 (1978),
      231--241.
      4. M. Gromov, Groups of polynomial growth and expanding maps, I. H. E.
      S. Publications mathematiques 53 (1981), 53--71.
      5. J. Tits, Appendix to M. Gromov, Groups of polynomial growth and
      expanding maps, I. H. E. S. Publications mathematiques 53
(1981), 53--71.,
      I. H. E. S. Publications mathematiques 53 (1981) 74--78.
      6. A. Preissmann, Quelques propietes globales des espaces de Riemann,
      Comment. Math. Helvet. 15 (1943) 175--216.

------------------------------

*Accommodation* (including breakfast, lunch) will be provided by Feza Gürsey
Institute *Student Hostel* for participants from outside İstanbul if
desired.

*Travel funds* are *not* available for participants.

*Program* is also featured on the Istanbul Mathematical Agenda:
http://www.google.com/calendar/embed?src=jdf754c331751cbt6q9vc281es%40group.calendar.google.com&ctz=Europe/Istanbul

All participants are encouraged to fill in the following *application form*.
Filling in the form is essential for the TÜBİTAK - FEZA GÜRSEY INSTITUTE to
provide the best service for all participants.

*Number of participants is limited to 30 people.*

*Deadline:* May 22, 2011

*To Apply:* http://www.gursey.gov.tr/apps/app-frm-gen.php?id=diffgeo11

*Web site:* http://www.gursey.gov.tr/new/diffgeo11/
*Organizer:*
F. Muazzez Simsir



Algebraic Combinatorics June 5 - 18, 2011

TÜBİTAK - FEZA GÜRSEY INSTITUTE

*Speakers:*

   - Alain Lascoux, IGM, Université de Marne-la-Vallée
   - Piotr Pragacz, Institute of Mathematics of Polish Academy of Sciences

*Lectures:*

   - *Combinatorial Operators on Polynomials, Schubert and Macdonald
   Polynomials* *by* Alain Lascoux

   *References:*
   1. A. Lascoux, Symmetric Functions and Combinatorial Operators on
      Polynomials, CBMS/AMS Lectures Notes 99, Providence (2003). (No ACE,
      Exercises)

      *Versions Available Online:*
      - Symmetric Functions, Nankai University, October-November
2001.<http://www.gursey.gov.tr/new/co1106/Lascoux/ALCoursSf2.pdf>(ACE,
Exercises)
         - Operators on Polynomials, ACE Summer School, July
2004.<http://www.gursey.gov.tr/new/co1106/Lascoux/Luminy.pdf>(ACE,
Exercises)
         - Symmetric Functions and Combinatorial Operators on Polynomials,
         North-Carolina, June
2001.<http://www.gursey.gov.tr/new/co1106/Lascoux/CbmsTout.pdf>(No
ACE, No Exercises)
      2. A. Lascoux, *Schubert and Macdonald Polynomials, a parallel*(preprint:
      http://igm.univ-mlv.fr/~al/ARTICLES/Dummies.pdf )
   - *Posititivity in Global Singularity Theory* *by* Piotr Pragacz

   The pioneering papers of Griffiths and Fulton and Lazarsfeld investigated
   numerical positivity related to ample vector bundles in differential and
   algebraic geometry. Their various variants are nowadays widely investigated
   in algebraic geometry. Among main objects of global singularity theory are
   the Thom polynomials of singularity classes. We shall consider Thom
   polynomials of singularities of mappings and Lagrangian and Legendrian Thom
   polynomials. We shall show that in some bases coming from representation
   theory, they admit positive expansions.

   *References:*
   1. Pragacz, Weber; Thom polynomials of invariant cones, Schur functions,
      and positivity, in: "Algebraic cycles, sheaves, shtukas, and moduli",
      "Trends in Mathematics", Birkhauser, 2007, 117-129.
      2. Pragacz, Mikosz, Weber; Positivity of Thom polynomials II: the
      Lagrange singularities , Fundamenta Math. 202 (2009), 65-79.
      3. Pragacz, Mikosz, Weber; Positivity of Legendrian Thom polynomials,
      arXiv:1005.1283v1 [math.AG].
   - *Chern Classes of Singular Varieties* *by* Piotr Pragacz

   For a singular variety, the family of the tangent spaces to its points
   does not give rise to a vector bundle. Nevertheless, it is possible to have
   well defined characteristic classes. They will be the subject of the talk.

   *References:*
   1. Pragacz, Parusinski; Characteristic classes of hypersurfaces and
      characteristic cycles, Journal of Algebraic Geometry 10 (2001), 63-79.
      2. Pragacz, Parusinski; Chern-Schwartz-MacPherson classes and the
      Euler characteristic of degeneracy loci and special divisors,
Journal of the
      A.M.S. 8(1995), 793-817.

------------------------------

*Accommodation* (including breakfast, lunch) will be provided by Feza Gürsey
Institute *Student Hostel* for participants from outside İstanbul if
desired.

*Travel funds* are *not* available for participants.

All participants, including those from Istanbul, are *strongly* encouraged
to fill in the following *application form*. Filling in the application form
is *critical*: It will help us at TÜBİTAK - Feza Gürsey Institute to keep
better records and provide the best service for all participants, including
meal arrangements and alike.

*Number of participants is limited to 30 people.*

*Deadline:* May 27, 2011

*To Apply:* http://www.gursey.gov.tr/apps/app-frm-gen.php?id=co1106

*Web site:* http://www.gursey.gov.tr/new/co1106/

*Organizers:*
Özer Öztürk (MSGSÜ),
Kürşat Aker (TÜBİTAK - Feza Gürsey Enstitüsü).
*Contact:* aker[/]gursey.gov.tr
-------------- sonraki bölüm --------------
Bir HTML eklentisi temizlendi...
URL: <http://yunus.listweb.bilkent.edu.tr/cgi-bin/mailman/private/turkmath/attachments/20110526/e2bf8614/attachment-0001.htm>


Turkmath mesaj listesiyle ilgili daha fazla bilgi