[Turkmath:8887] dokuz eylul uni. izmir, matematik seminer

Halil Oruc halil.oruc at deu.edu.tr
2 Nis 2013 Sal 09:34:04 EEST


Seminer:

3 Nisan Çarşamba, saat 14:30 

 

 

Konuşmacı: Mustafa Hakan Güntürkün (Gediz Üniversitesi, İzmir) 

http://www.gediz.edu.tr/pages/Ozgecmis.php?id=606

 

Yer: Dokuz Eylül Üniversitesi Matematik Bölümü 

Fen Fakültesi, Tınaztepe Kampüsü, Buca İzmir

Ömer Köse salonu  

 

 

Seminer Konusu:

Solving a Part of a Classical Question by Using Tropical Algebraic Geometry

 

Kısa özet:

 

A net is a special configuration of lines and points in the projective plane. 

There are certain restrictions on the number of its lines and points. 

In this talk we will prove that there cannot be any (4,4) nets in CP^2. In

order to show this, we will use tropical algebraic geometry. We will give

essential background for tropical algebraic geometry. We will tropicalize the

hypothetical net and show that there cannot be such a configuration in CP^2. 

In the end, I will talk about the structure of higher dimensional tropical lines and planes.  

 

 

-------------- sonraki bölüm --------------
Bir HTML eklentisi temizlendi...
URL: <http://yunus.listweb.bilkent.edu.tr/cgi-bin/mailman/private/turkmath/attachments/20130402/baeecb4b/attachment-0001.html>


Turkmath mesaj listesiyle ilgili daha fazla bilgi