[Turkmath:8887] dokuz eylul uni. izmir, matematik seminer
Halil Oruc
halil.oruc at deu.edu.tr
2 Nis 2013 Sal 09:34:04 EEST
Seminer:
3 Nisan Çarşamba, saat 14:30
Konuşmacı: Mustafa Hakan Güntürkün (Gediz Üniversitesi, İzmir)
http://www.gediz.edu.tr/pages/Ozgecmis.php?id=606
Yer: Dokuz Eylül Üniversitesi Matematik Bölümü
Fen Fakültesi, Tınaztepe Kampüsü, Buca İzmir
Ömer Köse salonu
Seminer Konusu:
Solving a Part of a Classical Question by Using Tropical Algebraic Geometry
Kısa özet:
A net is a special configuration of lines and points in the projective plane.
There are certain restrictions on the number of its lines and points.
In this talk we will prove that there cannot be any (4,4) nets in CP^2. In
order to show this, we will use tropical algebraic geometry. We will give
essential background for tropical algebraic geometry. We will tropicalize the
hypothetical net and show that there cannot be such a configuration in CP^2.
In the end, I will talk about the structure of higher dimensional tropical lines and planes.
-------------- sonraki bölüm --------------
Bir HTML eklentisi temizlendi...
URL: <http://yunus.listweb.bilkent.edu.tr/cgi-bin/mailman/private/turkmath/attachments/20130402/baeecb4b/attachment-0001.html>
Turkmath mesaj listesiyle ilgili
daha fazla bilgi