[Turkmath:10035] İki seminer

Mesut Şahin mesutsahin at gmail.com
22 Eyl 2014 Pzt 11:19:26 UTC


Değerli Liste Üyeleri,

Tübitak 2221-Konuk veya Akademik İzinli Bilim İnsanı Destekleme Programı
çerçevesince Prof. Dr. Francis  BONAHON  (University of Southern Califonia,
USA) bölümümüz öğretim üyelerinden Doç. Dr. Yaşar SÖZEN’i ziyaret
etmektedir.

  Profesör BONAHON Hacettepe Üniversitesi Fen Fakültesi Matematik Bölümü
Seminerleri kapsamında detayları aşağıda verilen iki konuşma verecektir.
İlgilenen herkesi davet ediyor, ekteki dosyaları bölümünüz seminer
panosunda ilan etmenizi umuyoruz.

 1. KONUŞMA

> Tarih : 24 Eylül 2014, Çarşamba

> Saat : 15:00

> Yer: Yaşar ATAMAN Seminer Salonu

> Konuşmacı: Prof. Dr. Francis  BONAHON (University of Southern Califonia,
USA)

> Başlık : Kauffman brackets on surfaces

> Özet : The classical Kauffman bracket is an invariant of knots in space,
closely related to the famous Jones polynomial. Witten's interpretation of
the Jones polynomial as a special case of a topological quantum field
theory leads to a generalization of Kauffman brackets to knots drawn on a
surface. I will discuss properties of these generalized Kauffman brackets.
This is joint work with Helen Wong.

2. KONUŞMA

> Tarih: 30 Eylül 2014, Salı

> Saat: 15:00

> Yer: Yaşar ATAMAN Seminer Salonu

> Konuşmacı: Prof. Dr. Francis  BONAHON (University of Southern Califonia,
USA)

> Başlık : Parametrizing the Hitchin component

> Özet : Much of two-dimensional hyperbolic geometry can be rephrased in
terms of homomorphisms from the fundamental group of a surface to the Lie
group SL_2(R). More precisely, in the space of all such homomorphisms,
those that arise from hyperbolic geometry form a whole connected component
called the Teichmüller component. Replacing SL_2(R) by SL_n(R), there
similarly exists a preferred component in the space of all homomorphisms
from a surface group to SL_n(R), called the Hitchin component. Hitchin
proved that the Hitchin component is homeomorphic to an open ball of
dimension 2(g-1)(n-1)(n+1) where g is the genus of the surface. I will
present another parametrization of the Hitchin component, which is more
closely connected to the geometric and dynamic properties of the
homomorphisms involved. This is joint work with Guillaume Dreyer.

> NOT: 1-Konuşma sonunda çay ve pasta ikramı olacaktır.

>   Mesut Sahin  Associate Professor
>   Department of Mathematics
>   Hacettepe University
>   TR 06800 Beytepe   ANKARA - TURKEY
>  http://yunus.hacettepe.edu.tr/~mesut.sahin
-------------- sonraki bölüm --------------
Bir HTML eklentisi temizlendi...
URL: <http://yunus.listweb.bilkent.edu.tr/cgi-bin/mailman/private/turkmath/attachments/20140922/4bdf0e4c/attachment-0001.html>
-------------- sonraki bölüm --------------
A non-text attachment was scrubbed...
Name: Seminerİlanı_2014-1ve2.docx
Type: application/vnd.openxmlformats-officedocument.wordprocessingml.document
Size: 59778 bytes
Desc: kullanılamıyor
URL: <http://yunus.listweb.bilkent.edu.tr/cgi-bin/mailman/private/turkmath/attachments/20140922/4bdf0e4c/attachment-0001.docx>


More information about the Turkmath mailing list