[Turkmath:5607] Hacettepe Üniversitesi Bölüm Semineri-Kostyantyn Zheltukhin

Asli Pekcan asli.pekcan at gmail.com
Thu May 5 12:33:17 UTC 2022


Sayın Hocalarım,

Hacettepe Üniversitesi Matematik Bölümü genel seminerlerimiz kapsamında, 11
Mayıs 2022 tarihinde saat 15:00'te zoom bağlantısı üzerinden
gerçekleştirilecek,
Orta Doğu Teknik Üniversitesi'nden Kostyantyn Zheltukhin'in vereceği ''*On
Discretization of Darboux Integrable Hyperbolic Equations*''
başlıklı konuşmaya hepinizi bekleriz. Konuşmanın özeti ve zoom bağlantısı
aşağıda yer almaktadır.

Saygılarımla,
Aslı Pekcan

*Seminer Zoom bağlantı linki:*
https://zoom.us/j/96402021730?pwdOVpremRkZ0ZlRjZKYXBHYmVidktNdz09
<https://www.google.com/url?q=https://zoom.us/j/96402021730?pwd%3DOVpremRkZ0ZlRjZKYXBHYmVidktNdz09&sa=D&source=calendar&usd=2&usg=AOvVaw2WMrBlUbHfamNcB43Wbr13>
*Toplantı Kimliği:  *964 0202 1730
*Parola*: 884074

*Konuşmacı:* Kostyantyn Zheltukhin
*Konuşma Özeti:* A hyperbolic equation  uxy=f(x,y,u,ux,uy) is called
Darboux integrable if there exist two functions I(x,u,ux,…) and
J(x,u,uy,…) such
that DyI=0 and DxJ=0 on all solutions of the equation. The functions I and J
are called x- and y-integrals respectively. The concept of x-, y-integrals
can be generalized to semi-discrete and discrete equations of the
hyperbolic type. Hence we can define Darboux integrability for
semi-discrete and discrete equations. In the present talk we consider the
problem of finding semi-discrete analogues of Darboux integrable continuous
equations. We require for the obtained  semi-discrete equation to be
Darboux integrable as well. To find such semi-dıscrete equations we will
use the  x- or y-integrals.
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://yunus.listweb.bilkent.edu.tr/pipermail/turkmath/attachments/20220505/8e72cecc/attachment.html>


More information about the Turkmath mailing list