[Turkmath:6706] HATIRLATMA-Seminer-Florian Luca (Stellenbosch University, South Africa)-Bilecik-12 Kasım

Ilker Inam ilker.inam at gmail.com
Mon Nov 11 06:36:50 UTC 2024


Değerli Liste Üyeleri,



Bilecik Şeyh Edebali Üniversitesi Fen Fakültesi Matematik Bölümü Cebir ve
Sayılar Teorisi Anabilim dalı öğretim üyeleri tarafından kurulan “Bilecik
Algebra & Number Theory (BANT)” grubu tarafından organize edilen
seminer serilerinin
yeni konuşması *12 Kasım** 2024 Salı günü* online olarak zoom üzerinden
düzenlenecektir.


Etkinliğin web sitesi: https://bilecikalgebranumbertheory.github.io/ dir.



Sıradaki konuşmacı Stellenbosch Üniversitesi'nin (Güney Afrika) değerli
öğretim üyesi *Florian Luca* olacaktır ve konuşma bilgileri aşağıda yer
almaktadır.



*Konuşma Adı:* On a question of Douglass and Ono
*Özet:* It is known that the partition function ( p(n) ) obeys Benford’s
law in any integer base ( b \geq 2 ). A similar result was obtained by
Douglass and Ono for the plane partition function ( PL(n) ) in a recent
paper. In their paper, Douglass and Ono asked for an explicit version of
this result. In particular, given an integer base ( b \geq 2 ) and a string
( f ) of digits in base ( b ), they asked for an explicit value ( N(b, f) )
such that there exists ( n \leq N(b, f) ) with the property that ( PL(n) )
starts with the string ( f ) when written in base ( b ). In my talk, I will
present an explicit value for ( N(b, f) ) both for the partition function (
p(n) ) as well as for the plane partition function ( PL(n) ).

*Tarih: 12/11/2024 *

*Saat: 19:00 İstanbul / 17:00 Berlin / 16:00 Londra *



Katılım için linkte yer alan form doldurulması yeterlidir,

Form linki: https://forms.gle/dHadgTbW4CFJcsrB6



Zoom linki formu doldurduktan sonra email ile paylaşılacaktır. Etkinlik
posteri ekte yer almaktadır.



Saygılarımla,

Prof.Dr. İlker İnam

Düzenleme komitesi adına.





—————————————————————



Dear list members,



The "Bilecik Algebra & Number Theory (BANT)" group, founded by the faculty
members of the Department of Algebra and Number Theory at Bilecik Seyh
Edebali University's Faculty of Science, will host its next seminar on *Tue,
November 12, 2024*. The event will be conducted online via Zoom.

The website for the event is:  https://bilecikalgebranumbertheory.github.io/
.



The inaugural speaker will be Florian Luca, a faculty member at
Stellenbosch University, South Africa. Details of the presentation are
provided below.



*Title: *On a question of Douglass and Ono

*Abstract: *It is known that the partition function ( p(n) ) obeys
Benford’s law in any integer base ( b \geq 2 ). A similar result was
obtained by Douglass and Ono for the plane partition function ( PL(n) ) in
a recent paper. In their paper, Douglass and Ono asked for an explicit
version of this result. In particular, given an integer base ( b \geq 2 )
and a string ( f ) of digits in base ( b ), they asked for an explicit
value ( N(b, f) ) such that there exists ( n \leq N(b, f) ) with the
property that ( PL(n) ) starts with the string ( f ) when written in base (
b ). In my talk, I will present an explicit value for ( N(b, f) ) both for
the partition function ( p(n) ) as well as for the plane partition function
( PL(n) ).


*Date: November 12, 2024, Tuesday*

*Time: 19:00 Istanbul / 17:00 Berlin / 16:00 London *



To participate, simply fill out the form at the following link:

Form Link: https://forms.gle/dHadgTbW4CFJcsrB6



The Zoom link will be shared via email after filling out the form. The
event poster is attached.



Best regards,

Prof.Dr. Ilker Inam

On behalf of the organizing committee
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://yunus.listweb.bilkent.edu.tr/pipermail/turkmath/attachments/20241111/5d19ecfa/attachment-0001.html>
-------------- next part --------------
A non-text attachment was scrubbed...
Name: Luca-Poster.jpeg
Type: image/jpeg
Size: 75137 bytes
Desc: not available
URL: <http://yunus.listweb.bilkent.edu.tr/pipermail/turkmath/attachments/20241111/5d19ecfa/attachment-0001.jpeg>


More information about the Turkmath mailing list