[Turkmath:7368] Feza Gürsey Fizik ve Matematik UygAr Merkezi::Genel Seminer
kazimilhan.ikeda
kazimilhan.ikeda at bogazici.edu.tr
Sun Jan 18 19:30:21 UTC 2026
Değerli Matematikçiler,
23 Ocak 2026 Cuma günü saat 13:30'da Feza Gürsey Fizik ve Matematik
UygAr Merkezi Genel Seminerleri kapsamında yüz yüze yapılacak olan
konuşma detayları aşağıdadır.
İyi çalışmalar,
İlhan İkeda
"Leibniz prop is a crossed presimplicial algebra"
Murat Can Aşkaroğulları (Gebze Teknik Üniversitesi)
Abstract:
Leibniz algebras, introduced by Loday and Pirashvili, are analogues of
Lie algebras that are not skew-symmetric. Just as in the Lie case,
Leibniz algebras are governed by an operad and can be modeled by an
associated PROP. We prove that the Leibniz PROP is isomorphic as k
-linear categories (not as monoidal categories) to the symmetric crossed
presimplicial algebra k[(Δ+)opS] where Δ+ is the presimplicial category,
but the distributive law between (Δ+)op and the symmetric groups
S=⨆n≥1Sn is not the standard one. In establishing this result, we also
extend the standard distributive law between k[(Δ+)op] and k[S] to a
distributive law between the nonsymmetric magmatic PROP and Artin's
braid monoid k[B] where B=⨆n≥1Bn. Furthermore, our proof yields a
description of the boundary maps on the Loday complex as alternating
sums of partial boundary maps. This is a joint work with Atabey Kaygun.
NOT: Seminer konuşması FGE-Merkez Bina'da yapılacaktır.
Ulaşım: https://fezagursey.bogazici.edu.tr/tr/ulasim
More information about the Turkmath
mailing list