The approximation By The q-BERNSTEIN POLYNOMIALS

Sofiya Ostrovska
Department of Mathematics, Atılim University, Ankara

For $q>0, n \in \mathbf{Z}_{+}$, the q-integer $[n]_{q}$ and the q-factorial $[n]_{q}!$ are defined by

$$
[n]_{q}:=1+q+\ldots+q^{n-1} \text { and }[n]_{q}!:=[1]_{q}[2]_{q} \ldots[n]_{q},
$$

respectively. For integers $0 \leq k \leq n$, the q-binomial coefficient is defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!} .
$$

Definition. Given $f:[0,1] \rightarrow \mathbf{C}$, the q-Bernstein polynomials of f are:

$$
B_{n, q}(f ; z):=\sum_{k=0}^{n} f\left(\frac{[k]_{q}}{[n]_{q}}\right) z^{k} \prod_{j=0}^{n-1-k}\left(1-q^{j} z\right), \quad n \in \mathbf{N} .
$$

For $q=1$, we recover the Bernstein polynomials, while for $q \neq 1$, we obtain new polynomials with rather different properties. In this talk, we discuss the possibilities of the uniform approximation of f by polynomials $B_{n, q}(f,$.$) both for$ $0<q<1$ and $q>1$. The obtained results reveal some unexpected phenomena showing that the approximation properties of the q-Bernstein are essentially different from those of the Bernstein ones. Moreover, the cases $0<q<1$ and $q>1$ are not similar to each other. The talk contains new results as well as those known previously.

