<html xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv=Content-Type content="text/html; charset=iso-8859-9">
<meta name=Generator content="Microsoft Word 11 (filtered medium)">
<style>
<!--
/* Font Definitions */
@font-face
        {font-family:Tahoma;
        panose-1:2 11 6 4 3 5 4 4 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0cm;
        margin-bottom:.0001pt;
        font-size:12.0pt;
        font-family:"Times New Roman";}
a:link, span.MsoHyperlink
        {color:blue;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {color:purple;
        text-decoration:underline;}
span.EmailStyle17
        {mso-style-type:personal;
        font-family:Arial;
        color:windowtext;}
span.EmailStyle18
        {mso-style-type:personal;
        font-family:Arial;
        color:navy;}
span.EmailStyle19
        {mso-style-type:personal;
        font-family:Arial;
        color:navy;}
span.EmailStyle20
        {mso-style-type:personal;
        font-family:Arial;
        color:navy;}
span.EmailStyle21
        {mso-style-type:personal-reply;
        font-family:Arial;
        color:navy;}
@page Section1
        {size:595.3pt 841.9pt;
        margin:70.85pt 70.85pt 70.85pt 70.85pt;}
div.Section1
        {page:Section1;}
-->
</style>
</head>
<body lang=TR link=blue vlink=purple>
<div class=Section1>
<p class=MsoNormal align=center style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
auto;text-align:center'><b><font size=3 face=Arial><span style='font-size:12.0pt;
font-family:Arial;font-weight:bold'>Assist. Prof. Ferit Öztürk<o:p></o:p></span></font></b></p>
<p class=MsoNormal align=center style='mso-margin-top-alt:auto;margin-bottom:
12.0pt;text-align:center'><font size=3 face=Tahoma><span style='font-size:12.0pt;
font-family:Tahoma'>Boğaziçi University<o:p></o:p></span></font></p>
<p class=MsoNormal align=center style='mso-margin-top-alt:auto;margin-bottom:
12.0pt;text-align:center'><font size=3 color=navy face=Tahoma><span
style='font-size:12.0pt;font-family:Tahoma;color:navy'>11</span></font><font
face=Tahoma><span style='font-family:Tahoma'> December Friday, at <font
color=blue><span style='color:blue'>14:00</span></font>;<br>
Bilgi Üniversitesi Dolapdere Kampüsü, Room:<font color=blue><span
style='color:blue'>130.</span></font></span></font><font color=red><span
style='color:red'><o:p></o:p></span></font></p>
<p class=MsoNormal align=center style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
auto;text-align:center'><b><font size=3 face=Arial><span style='font-size:12.0pt;
font-family:Arial;font-weight:bold'>Title: </span></font></b><o:p></o:p></p>
<p class=MsoNormal align=center style='text-align:center;text-autospace:none'><font
size=3 face=Tahoma><span style='font-size:12.0pt;font-family:Tahoma'>There is a
unique real tight contact 3-ball<o:p></o:p></span></font></p>
<p class=MsoNormal align=center style='text-align:center;text-autospace:none'><font
size=3 face=Tahoma><span style='font-size:12.0pt;font-family:Tahoma'><o:p> </o:p></span></font></p>
<p class=MsoNormal align=center style='mso-margin-top-alt:auto;mso-margin-bottom-alt:
auto;text-align:center'><b><font size=3 face=Arial><span lang=EN-US
style='font-size:12.0pt;font-family:Arial;font-weight:bold'> </span></font></b><b><font
face=Arial><span style='font-family:Arial;font-weight:bold'>Abstract:<o:p></o:p></span></font></b></p>
<p class=MsoNormal style='text-align:justify;text-autospace:none'><font size=3
face=Tahoma><span style='font-size:12.0pt;font-family:Tahoma'>A real structure
on a smooth 3-manifold is an orientation preserving involution. A real contact
structure on a real 3-manifold is a contact 1-form which is anti-symmetric with
respect to the real structure.<o:p></o:p></span></font></p>
<p class=MsoNormal style='text-align:justify;text-autospace:none'><font size=3
face=Tahoma><span style='font-size:12.0pt;font-family:Tahoma'>In the first part
of the talk we make an introduction to the theory of vector fields on surfaces
and convex surface theory in contact 3-manifolds. In the second part, we
use those results to prove that there is a unique real tight contact 3-ball
with convex boundary up to isotopy through real tight structures.<o:p></o:p></span></font></p>
<p class=MsoNormal style='text-align:justify;text-autospace:none'><font size=3
face=Tahoma><span style='font-size:12.0pt;font-family:Tahoma'>This is part of a
joint project with Nermin Salepci.<o:p></o:p></span></font></p>
<p class=MsoNormal style='text-align:justify'><font size=3 face=Tahoma><span
style='font-size:12.0pt;font-family:Tahoma'><o:p> </o:p></span></font></p>
<p class=MsoNormal><font size=2 face=Arial><span style='font-size:10.0pt;
font-family:Arial'><o:p> </o:p></span></font></p>
</div>
</body>
</html>