Let K G_0 be a semisimple linear algebraic group over an algebraically closed field K. Let $\rho: G_0 \to GL(V)$ be an irreducible representation of G_0 , and let $G = K^* \cdot \rho(G_0)$ be the image of G_0 under ρ , adjoined by the scalar matrices. The J-irreducible monoid associated with the pair (G_0, ρ) is the Zariski closure M of the group G in End(V).

The group $G \times G$ acts on the monoid M by $(g,h) \cdot x = gxh^{-1}$, $x \in M$, $(g,h) \in G \times G$. Let $J_x = GxG$ denote an orbit for some $x \in M$. There is a natural partial ordering on the set $\{J_x : x \in M\}$ of orbits:

$$J_e \le J_f \iff J_e \subseteq \overline{J_f}, \ e, f \in M.$$
 (1)

Here $\overline{J_f}$ denotes the Zariski closure of J_f in M. The poset $\{J_x: x \in M\}$ is called the cross section lattice of M. Surprisingly, by a result of Putcha and Renner the cross section lattice of a J-irreducible monoid can be identified with a sublattice of the Boolean lattice of the set of nodes of the Dynkin diagram of G_0 .

In this talk, we look into some combinatorial properties of the cross section lattice of a J-irreducible monoid associated with a semisimple group of one of the types A_n , B_n , or C_n . In particular, we determine which cross section lattices are supersolvable and compute their characteristic polynomials. If time permits we will talk about some combinatorial generalizations of the idea.