<div class="gmail_quote"><blockquote class="gmail_quote" style="border-left: 1px solid rgb(204, 204, 204); margin: 0pt 0pt 0pt 0.8ex; padding-left: 1ex;"> <b>Mimar Sinan Güzel Sanatlar Üniversitesi Matematik Bölümü Genel Seminerleri<br>
</b><br>
Konusmaci: Prof. Dr. Vladimir Tolstykh<br>Yeditepe Universitesi<br><br><br> <b>On the automorphism groups of groups F/R'</b><br><br>The sketch of the proof of the following result will be discussed.<br>Let F be an infinitely generated free group and R a fully invariant<br>
subgroup of F such that<br>(a) R is contained in the commutator<br>subgroup F' of F and <br>(b) the quotient group F/R is residually torsion-free nilpotent.<br><br> Then the automorphism<br>group Aut(F/R') of the group F/R' is complete.<br>
<br>This extends a result by Dyer and<br>Formanek (1977) on finitely generated<br>groups F_n/R' where F_n is a free<br>group of rank at least two and<br>R a characteristic subgroup of F_n.<br><br><br> Yer : 408 No'lu Amfi<br>
MSGSÜ Fen Edebiyat Fakültesi(Beşiktaş)<br><br> Zaman : 26 Şubat 2010 Cuma, 16:30
</blockquote></div><br>