

IZMIR UNIVERSITY Faculty of Art and Science Department of Mathematics and Computer Science

İzmir Applied Mathematics and Computer Science Seminars

April 08, 2010 (Thursday), 13:30

Two Inverse Problems for Parabolic Equations and Two Approaches : 1. Forward Collocation Method 2. Coarse-Fine Grid Method Based on Adjoint Problem Approach

Speaker:

Assist. Prof. Burhan PEKTAŞ

Department of Mathematics and Computer Science, Izmir University

Place:

IZMIR UNIVERSITY FACULTY OF ART AND SCIENCE, DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE ROOM: A302

IZMIR UNIVERSITY Faculty of Art and Science Department of Mathematics and Computer Science

Two Inverse Problems for Parabolic Equations and Two Approaches : 1. Forward Collocation Method 2. Coarse-Fine Grid Method Based on Adjoint Problem Approach

Assist. Prof. Burhan PEKTAŞ Department of Mathematics and Computer Science, Izmir University

Abstract

We study two inverse problems for parabolic type partial differential equations. First, we consider the backward parabolic problem related to the convection-diffusion operator $Au := u_t - (D(x)u_x)_x + (cu)_x$ when the diffusion coefficient D(x) may be discontinuous. The forward collocation method (FC-method) is used for numerical solution of this backward transmission problem. According to the method, we approximate the unknown function $\phi(x) = u(x,t_0)$ by the piecewise linear continuous, Lagrange type of basis functions. Moreover, we solve the obtained ill-conditioned system of algebraic equations by using truncated singular value decomposition (TSVD). An efficiency and applicability of the method is demonstrated on various numerical examples.

Second, we give a numerical algorithm for determining the diffusion coefficient k = k(x) in the linear parabolic equation $u_t = (k(x)u_x)_x$ from the measured output data is presented. The main distinguished feature of the proposed algorithm is the use of a fine mesh for the numerical solution of the well-posed forward and backward parabolic problems, and a coarse mesh for the interpolation of unknown coefficient k = k(x). The nodal values of the unknown coefficient on the coarse mesh are recovered sequentially, solving on each step the well-posed forward and the sequence of backward initial value problems. This guarantees a compromise between the accuracy and stability of the solution of the considered inverse problem. An efficiency and applicability of the method is demonstrated on various numerical examples.