
Inversion Formulas in Truncated Data Ray-Tomography

Matias Courdurier
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Abstract

In Ray-Tomography the goal is to recover a function in higher dimensions
from knowledge of integrals of the function along lines. For example, in the
Euclidean setting we let f ∈ C∞

0
(R2), and for each straight line L in R

2, we
define the Ray-Transform of f along L as

Rf(L) :=

∫
L

f(l)dl (dl = Lebesgue measure in L).

The inversion problem consists of recovering f at all or some points of R
2 from

knowledge of Rf along all or some of the straight lines in R
2. Or if H is the

Hyperbolic plane and f : H → R is smooth and compactly supported, for each
γ : R → H arc-length parametrized geodesic we define the Ray-Transform of
f along γ as

Rf(γ) :=

∫
R

f(γ(s))ds.

Again, the inversion problem consists of recovering f at all or some points of
H from knowledge of Rf along all or some geodesics in H.

These two particular cases of Ray-Tomography are closely related to appli-
cations in medical imaging techniques, like Computed Tomography or Positron
Emission Tomography [3], as well as to geological exploration techniques, ap-
pearing as the linearized problem in Travel Time Tomography [7].

The ray transform has been amply studied in general settings [8]. In
addition to injectivity, support theorems and stability results for particular
cases, inversion formulas have also been provided [2, 3, 5, 6]. Unfortunately,
these inversion formulas require knowledge of Rf over all straight lines (or
geodesics) to recover f at one given point, which is very inconvenient from
the point of view of applications.

A different approach for the Euclidean case was proposed in [4]. The inver-
sion of the Ray-Transform is reduced to a problem of inverting a one dimen-
sional Hilbert transform. A new inversion formula, not requiring knowledge
of all of Rf , was obtained (eg. [4]) and injectivity and stability results for
other cases of Euclidean truncated measurements followed [1].

In this talk we will first present how the Ray-Transform appears as a
model of the measurements in the applications mentioned above. Then we will
overview the non-locality issue of the previous inversion formulas. Afterwards
we will go into more detail about the approach for the Euclidean setting
introduced in [4], with the generalizations obtained in [1]. To conclude, we
will present some new results generalizing the approach in [4] to the Hyperbolic
plane setting.
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