<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=ISO-8859-1">
</head>
<body text="#000000" bgcolor="#ffffff">
TÜBİTAK Feza Gürsey Enstitütüsü Yerleşke dışı Etkinlikleri Programı
çerçevesinde düzenlenen<br>
<br>
<br>
<div align="center">I M B M istanbul center for mathematical
sciences<br>
<br>
Noncommutative Principal Fiber Bundles<br>
<br>
Christian Kassel<br>
<br>
Universit´e de Strasbourg and<br>
CNRS Institut de Recherche Math´ematique Avanc´ee<br>
</div>
<font size="2"><font face="Elephant, serif"><b><br>
</b></font></font> <br>
<div align="center">14 - 19 October 2010 <br>
</div>
<br>
<br>
duyurusudur.<br>
<br>
<br>
<hr width="100%" size="2"><br>
<br>
<div align="center">I M B M istanbul center for mathematical
sciences<br>
<br>
Noncommutative Principal Fiber Bundles<br>
<br>
Christian Kassel<br>
<br>
Universit´e de Strasbourg and<br>
CNRS Institut de Recherche Math´ematique Avanc´ee<br>
<br>
Abstract<br>
<br>
I’ll first recall the basic dictionary of noncommutative geometry
between spaces and<br>
algebras and between groups and Hopf algebras. Then I will
introduce noncommutative<br>
principal fiber bundles, which are noncommutative (or quantum)
analogues<br>
of principal fiber bundles where the role of the structural group
is played by a Hopf<br>
algebra rather than by a group. There are many examples of such
bundles in quantum<br>
group theory. Nicely enough, they have a simple algebraic
definition. I will give<br>
examples of these objects, list some of their properties, and show
how to construct<br>
an important class of them. I will close the lectures by
demonstrating how any Hopf<br>
algebra (or quantum group) fibers naturally over an algebraic
variety. This means<br>
that there is classical geometry behind any Hopf algebra. No
previous knowledge<br>
of quantum groups or Hopf algebras will be assumed. All concepts I
will introduce<br>
will be illustrated with simple examples.<br>
<br>
Lecture 1: Thursday October 14 10:00<br>
Lecture 2: Friday October 15 10:00<br>
Lecture 3: Monday October 18 10:00<br>
Lecture 4: Tuesday October 19 10:00<br>
<br>
All talks will be held at IMBM Seminar Room, Boğaziçi University.<br>
<br>
This workshop is sponsored by TÜBİTAK İŞBAP Project no: 107T897.<br>
</div>
</body>
</html>