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Abstract

The stable difference scheme for the approximate solution of the initial value
problem

du(t)

dt
+ D

1
2
t u(t) + Au(t) = f(t), 0 < t < 1, u(0) = 0

for the differential equation in a Banach space E with the strongly positive op-

erator A and fractional operator D
1
2
t is presented. The well-posedness of the

difference scheme in difference analogues of spaces of smooth functions is estab-
lished. In practice, the coercive stability estimates for the solution of difference
schemes for the 2m-th order multi-dimensional fractional parabolic equation
and the one-dimensional fractional parabolic equation with nonlocal boundary
conditions in space variable are obtained.
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1. INTRODUCTION. THE DIFFERENTIAL PROBLEM

It is known that differential equations involving derivatives of noninteger order
have shown to be adequate models for various physical phenomena in areas like rhe-
ology, damping laws, diffusion processes, etc. (see, e.g., [1]- [11] and the references
given therein). A review of some applications of fractional calculus in continuum and
statistical mechanics is given by Mainardi [7].

The role played by coercive stability inequalities (well-posedness) in the study of
boundary-value problems for parabolic partial differential and difference equations is
well known ( see, e.g.,[12], [15]). In paper [17], the initial value problem

du(t)
dt

+D
1
2
t u(t) +Au(t) = f(t), 0 < t < 1, u(0) = 0 (1)

for the fractional differential equation in a Banach space E with the strongly posi-
tive operator A is considered. Here D

1
2
t = D

1
2
0+ is the standard Riemann-Lioville’s

derivative of order 1
2 . This fractional differential equation corresponds to the Basset

problem [6]. It represents a classical problem in fluid dynamics where the unsteady
motion of a particle accelerates in a viscous fluid due to the gravity of force.

A function u(t) is called a solution of the problem (1) if the following conditions
are satisfied:

i) u(t) is continuously differentiable on the segment [0, 1],
ii) The element u(t) belongs to D(A) for all t ∈ [0, 1] and the function Au(t) is

continuous on the segment [0, 1],
iii) u(t) satisfies the equation and the initial condition (1).
A solution of problem (1) defined in this manner will from now on referred to as

a solution of problem (1) in the space C(E) = C([0, 1], E) of all continuous functions
ϕ(t) defined on [0, 1] with values in E equipped with the norm

||ϕ||C(E) = max
0≤t≤1

||ϕ(t)||E .
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The well-posedness in C(E) of the boundary value problem (1) means that coercive
inequality

‖u′‖C(E) + ‖D
1
2
t u‖C(E) + ‖Au‖C(E) ≤M‖f‖C(E)

is true for its solution u(t) ∈ C(E) with some M, which does not depend on f(t) ∈
C(E).

Positive constants, which can differ in time ( hence: not a subject of precision)
will be indicated with an M . On the other hand M(α, β, · · ·) is used to focus on the
fact that the constant depends only on α, β, · · ·.

In paper [17], the following theorems on well-posedness of (1) in spaces of smooth
functions was established.
Theorem 1. Let A be a strongly positive operator in a Banach space E and f(t) ∈
C(E). Then, for the solution u(t) in C(E) of the initial value problem (1) the stability
inequality holds:

‖ D
1
2
t u ‖C(E) + ‖ u′ +Au ‖C(E)≤M ‖ f ‖C(E) . (2)

Theorem 2. Let A be a strongly positive operator in a Banach space E and f(t) ∈
C(Eα)(0 < α < 1). Then for the solution u(t) in C(Eα) of the initial value problem
(1) the coercive inequality is valid:

‖ u′ ‖C(Eα) + ‖ Au ‖C(Eα)≤Mα−1(1− α)−1 ‖ f ‖C(Eα) . (3)

Here, the fractional space Eα = Eα(E,A)(0 < α < 1), consisting of all v ∈ E for
which the following norm is finite:

‖v‖Eα = sup
λ>0

λ1−α ‖ Aexp(−λA)v ‖E

is additionally introduced.
In the present paper, the stable difference scheme for the approximate solution of

initial value problem (1){
τ−1(uk − uk−1) +Auk +D

1
2
τ uk = fk,

fk = f(tk), tk = kτ, 1 ≤ k ≤ N, Nτ = 1, u0 = 0
(4)

is presented. Here,

D
1
2
τ uk =

1√
π

k∑
m=1

Γ(k −m+ 1
2 )

(k −m)!
um − um−1

τ
1
2

,Γ(k −m+
1
2

) =

∞∫
0

tk−m−
1
2 e−tdt. (5)

The paper is organized as follows. The well-posedness of (4) in difference ana-
logues of spaces of smooth functions is established in Section 2. In Section 3 the
coercive stability estimates for the solution of difference schemes for the 2m-th order
multi-dimensional fractional parabolic equation and the one-dimensional fractional
parabolic equation with nonlocal boundary conditions in space variable are obtained.

2. THE WELL-POSEDNESS OF DIFFERENCE SCHEME

Let us first obtain the representation for the solution of problem (4). It is clear that
the first order of accuracy difference scheme

τ−1(uk − uk−1) +Auk = Fk, 1 ≤ k ≤ N, Nτ = 1, u0 = 0
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has a solution and the following formula holds:

uk =
k∑
s=1

Rk−s+1Fsτ, 1 ≤ k ≤ N,

where R = (I + τA)−1
. Applying the formula Fk = fk −D

1
2
τ uk, we get

uk = −
k∑
s=1

Rk−s+1D
1
2
τ usτ +

k∑
s=1

Rk−s+1fsτ, 1 ≤ k ≤ N. (6)

So, formula (6) gives the representation for the solution of problem (4).
Let Fτ (E) be the linear space of mesh functions ϕτ = {ϕk}N1 with values in the Banach
space E. Next on Fτ (E) we introduce the Banach space Cτ (E) = C([0, 1]τ , E) with
the norm

‖ ϕτ ‖Cτ (E) = max
1≤k≤N

‖ ϕk ‖E .

Theorem 3. Let A be a strongly positive operator in a Banach space E . Then, for
the solution uτ = {uk}N1 in Cτ (E) of initial value problem (4) the stability inequality
holds:

∥∥∥∥{D 1
2
τ uk

}N
1

∥∥∥∥
Cτ (E)

+
∥∥∥{τ−1(uk − uk−1) +Auk

}N
1

∥∥∥
Cτ (E)

≤M ‖ fτ ‖Cτ (E) . (7)

Proof. Using formula (6), we get

τ−1(uk − uk−1) = −D
1
2
τ uk +

k∑
s=1

ARk−s+1D
1
2
τ usτ + fk −

k∑
s=1

ARk−s+1fsτ. (8)

Applying formulas (8) and (5), we obtain

D
1
2
τ uk =

1√
π

k∑
m=1

Γ(k −m+ 1
2 )

(k −m)!
τ

1
2

[
−D

1
2
τ um + fm

]

+
1√
π

k∑
s=1

k∑
m=s

Γ(k −m+ 1
2 )

(k −m)!
ARm−s+1D

1
2
τ usτ

3
2

− 1√
π

k∑
s=1

k∑
m=s

Γ(k −m+ 1
2 )

(k −m)!
ARm−s+1fsτ

3
2 .

Let us first obtain the estimate∥∥∥∥∥ 1√
π

k∑
m=s

Γ(k −m+ 1
2 )

(k −m)!
ARm−s+1τ

1
2

∥∥∥∥∥
E→E

≤ M√
(k − s) τ

(9)

for any 1 ≤ s < k ≤ N. We have that

1√
π

k∑
m=s

Γ(k −m+ 1
2 )

(k −m)!
ARm−s+1τ

1
2 =

1√
π

k∑
m=[ s+k2 ]

Γ(k −m+ 1
2 )

(k −m)!
ARm−s+1τ

1
2
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+
1√
π

[ s+k2 ]−1∑
m=s

Γ(k −m+ 1
2 )

(k −m)!
ARm−s+1τ

1
2 = J1 + J2.

Using estimates [14]∥∥ARk∥∥
E→E ≤

M

kτ
,
∥∥Rk∥∥

E→E ≤M, 1 ≤ k ≤ N (10)

and the following elementary inequality

Γ(k −m+ 1
2 )

(k −m)!
≤ 1√

k −m
, 0 ≤ m < k, (11)

we get

‖J1‖E→E ≤
1√
π

k∑
m=[ s+k2 ]

Γ(k −m+ 1
2 )

(k −m)!

∥∥ARm−s+1
∥∥
E→E τ

1
2 (12)

≤ 2M
(k − s) τ

1√
π

k∑
m=[ s+k2 ]

τ√
(k −m) τ

≤ M1√
(k − s) τ

.

Now, we shall estimate J2. We have that

J2 =
1√
π

Γ(k − s+ 1
2 )

(k − s)!
τ−

1
2 − 1√

π

Γ(k −
[
s+k
2

]
+ 3

2 )
(k −

[
s+k
2

]
+ 1)!

R[ s+k2 ]−sτ−
1
2

+
1√
π

[ s+k2 ]−1∑
m=s+1

[
Γ(k −m+ 1

2 )
(k −m)!

−
Γ(k −m+ 3

2 )
(k −m+ 1)!

]
Rm−sτ−

1
2 .

Applying estimates (10) and (11), we obtain

‖J2‖E→E ≤
1√
π

1√
(k − s) τ

+
1√
π

∥∥∥R[ s+k2 ]−s
∥∥∥
E→E

1√
(k −

[
s+k
2

]
+ 1)τ

(13)

+
1√
π

[ s+k2 ]−1∑
m=s+1

∣∣∣∣Γ(k −m+ 1
2 )

(k −m)!
−

Γ(k −m+ 3
2 )

(k −m+ 1)!

∣∣∣∣ ∥∥Rm−s∥∥E→E τ− 1
2

≤ 1√
π

1√
(k − s) τ

+
1√
π
M

√
2√

(k − s)τ

+M
1
2√
π

[ s+k2 ]−1∑
m=s+1

τ

(k −m+ 1) τ
√

(k −m) τ
≤ M2√

(k − s) τ
.

Estimate (9) follows from estimates (12) and (13).

Now, let us first estimate zk =
∥∥∥D 1

2
τ uk

∥∥∥
E
. Applying the triangle inequality and

estimate (9), we get

zk ≤
1√
π

k∑
m=1

Γ(k −m+ 1
2 )

(k −m)!
τ

1
2 [zm + ‖fm‖E ]
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+
1√
π

k∑
s=1

∥∥∥∥∥
k∑

m=s

Γ(k −m+ 1
2 )

(k −m)!
ARm−s+1

∥∥∥∥∥
E→E

zsτ
3
2

+
1√
π

k∑
s=1

∥∥∥∥∥
k∑

m=s

Γ(k −m+ 1
2 )

(k −m)!
ARm−s+1

∥∥∥∥∥
E→E

‖fs‖E τ
3
2

≤M3

k−1∑
s=1

1√
(k − s) τ

τ [zs + ‖fs‖E ] +M4 [zk + ‖fk‖E ] τ
1
2

for any k = 1, · · ·, N. Applying the above inequality and the difference analogue of
the integral inequality, we obtain∥∥∥∥{D 1

2
τ uk

}N
1

∥∥∥∥
Cτ (E)

≤M ‖fτ‖Cτ (E) . (14)

Using the triangle inequality and equation (4), we get

∥∥∥{τ−1(uk − uk−1) +Auk
}N

1

∥∥∥
Cτ (E)

≤

[
‖fτ‖Cτ (E) +

∥∥∥∥{D 1
2
τ uk

}N
1

∥∥∥∥
Cτ (E)

]

≤M1 ‖ fτ ‖Cτ (E) . (15)

Estimate (7) follows from estimates (14) and (15). Theorem 3 is proved.
Theorem 4. Let A be a strongly positive operator in a Banach space E. Then, for
the solution uτ = {uk}N1 in Cτ (E) of initial value problem (4) the almost coercive
stability inequality is valid:∥∥{τ−1(uk − uk−1)}N1

∥∥
Cτ (E)

+
∥∥{Auk}N1 ∥∥Cτ (E)

(16)

≤M min
{

ln
1
τ
, 1 + ln ‖A‖E→E

}
‖ fτ ‖Cτ (E) .

Proof. The proof of estimate∥∥∥{τ−1(uk − uk−1)
}N

1

∥∥∥
Cτ (E)

≤M min
{

ln
1
τ
, 1 + ln ‖A‖E→E

}
‖ fτ ‖Cτ (E) (17)

for the solution of initial value problem (4) is based on estimate (7) and the following
estimates [12]:

max
1≤k≤N

∥∥∥∥∥
k∑
s=1

ARk−s+1fsτ

∥∥∥∥∥
E

≤M min
{

ln
1
τ
, 1 + ln ‖A‖E→E

}
‖ fτ ‖C(E),

max
1≤k≤N

∥∥∥∥∥
k∑
s=1

ARk−s+1D
1
2
τ usτ

∥∥∥∥∥
E

≤M min
{

ln
1
τ
, 1 + ln ‖A‖E→E

}
‖ {D

1
2
τ uk}N1 ‖C(E) .

Using these estimates, the triangle inequality and equation (4), we get∥∥∥{Auk}N1 ∥∥∥
Cτ (E)

≤M1 min
{

ln
1
τ
, 1 + ln ‖A‖E→E

}
‖ fτ ‖C(E) . (18)

Estimate (16) follows from estimates (17) and (18). Theorem 4 is proved.
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Note that the Banach space E
′

α = E
′

α(E,A)(0 < α < 1) consists of those v ∈ E for
which the norm

‖ v ‖E′α= sup
λ>0

λα ‖ A(λ+A)−1v ‖E

is finite.
Theorem 5. Let A be a strongly positive operator in a Banach space E . Then,
for the solution uτ = {uk}N1 in Cτ (E

′

α) of the initial value problem (4) the coercive
stability inequality is valid:∥∥{τ−1(uk − uk−1)}N1

∥∥
Cτ (E

′
α)

+
∥∥{Auk}N1 ∥∥Cτ (E′α)

(19)

≤Mα−1(1− α)−1 ‖ fτ ‖Cτ (E′α) .

Proof. By Theorem 3,∥∥∥∥{D 1
2
τ uk

}N
1

∥∥∥∥
Cτ (E

′
α)

≤M ‖ fτ ‖Cτ (E′α) (20)

for the solution of initial value problem (4). The proof of estimate∥∥∥{τ−1(uk − uk−1)
}N

1

∥∥∥
Cτ (E

′
α)
≤Mα−1(1− α)−1 ‖ fτ ‖Cτ (E′α) (21)

for the solution of initial value problem (4) is based on estimate (20) and the following
estimates [12] :

max
1≤k≤N

∥∥∥∥∥
k∑
s=1

ARk−s+1fsτ

∥∥∥∥∥
E′α

≤Mα−1(1− α)−1 ‖ fτ ‖C(E′α), (22)

max
1≤k≤N

∥∥∥∥∥
k∑
s=1

ARk−s+1D
1
2
τ usτ

∥∥∥∥∥
E′α

≤Mα−1(1− α)−1 ‖ {D
1
2
τ uk}N1 ‖C(E′α) . (23)

Using the triangle inequality, estimates (22), (23) and equation (4), we get∥∥∥{Auk}N1 ∥∥∥
Cτ (E

′
α)
≤M1α

−1(1− α)−1 ‖ fτ ‖C(E′α) . (24)

Estimate (19) follows from estimates (21) and (24). Theorem 5 is proved.
Note that by passing to the limit for τ → 0 one can recover Theorems 1 and 2.

3. APPLICATIONS

Now, we consider the applications of Theorem 3, 4 and 5.
First, the initial-value problem on the range {0 ≤ t ≤ 1, x ∈ Rn} for the 2m-order
multi-dimensional fractional parabolic equation is considered:

∂v(t,x)
∂t +D

1
2
t v(t, x) +

∑
|r|=2m

ar(x) ∂|r|v(t,x)

∂x
r1
1 ···∂x

rn
n

+ σv(t, x) = f(t, x),

0 < t < 1; v(0, x) = 0, x ∈ Rn, |r| = r1 + · · ·+ rn,
(25)

where ar(x) and f(t, x) are given as sufficiently smooth functions. Here, σ is a
sufficiently large positive constant.
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The discretization of problem (25) is carried out in two steps. In the first step, the
grid space Rn

h (0 < h ≤ h0) is defined as the set of all points of the Euclidean space
Rn whose coordinates are given by

xk = skh, sk = 0,±1,±2, · · ·, k = 1, · · ·, n.

The difference operator Axh = Bxh + σIh is assigned to the differential operator
Ax = Bx + σI, defined by (25). The operator

Bxh = h−2m
∑

2m≤|s|≤S

bxs∆s1
1−∆s2

1+...∆
s2n−1
n− ∆s2n

n+ , (26)

acts on functions defined on the entire space Rn
h. Here, s ∈ R2n is a vector with

nonnegative integer coordinates,

∆k±f
h (x) = ±

(
fh (x± ekh)− fh (x)

)
,

where ek is the unit vector of the axis xk.
An infinitely differentiable function ϕ (x) of the continuous argument x ∈ Rn that
is continuous and bounded together with all its derivatives is said to be smooth.
We say that the difference operator Axh is a λ-th order (λ > 0) approximation of the
differential operator Ax if the inequality

sup
x∈Rnh

|Axhϕ (x)−Axϕ (x)| ≤M (ϕ)hλ

holds for any smooth function ϕ (x) . The coefficients bxs are chosen in such a way that
the operator Axh approximates in a specified way the operator Ax. It is assumed that
the operator Axh approximates the differential operator Ax with any prescribed order
[16] .

The function Ax (ξh, h) is obtained by replacing the operator ∆k± in the right-
hand side of equality (26) with the expression ± (exp {±iξkh} − 1), respectively, and
is called the symbol of the difference operator Bxh .
We shall assume that for |ξkh| ≤ π and fixed x the symbol Ax(ξh, h) of the operator
Bxh = Axh − σIh satisfies the inequalities

(−1)mAx(ξh, h) ≥M |ξ|2m, | argAx(ξh, h)| ≤ φ < φ0 ≤
π

2
. (27)

Suppose that the coefficient bxs of the operator Bxh = Axh−σIh is bounded and satisfies
the inequalities

|bx+ekhs − bxs | ≤Mhε, x ∈ Rn
h, ε ∈ (0, 1]. (28)

With the help of Axh, we arrive at the initial value problem{
dvh(t,x)

dt +D
1
2
t v

h(t, x) +Axhv
h(t, x) = fh(t, x), 0 < t < 1, x ∈ Rnh,

vh(0, x) = 0, x ∈ Rnh
(29)

for an infinite system of ordinary differential equations.
In the second step, problem (29) is replaced by the difference scheme

uhk(x)−uhk−1(x)

τ +D
1
2
τ uhk +Axhu

h
k = fhk (x),

fhk (x) = fh(tk, x), tk = kτ, 1 ≤ k ≤ N, Nτ = 1, x ∈ Rnh,
uh0 (x) = 0, x ∈ Rnh.

(30)
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Based on the number of corollaries of the abstract theorems given in the above, to
formulate the result, one needs to introduce the spaces Ch = C(Rnh) and
Cβh = Cβ(Rn

h) of all bounded grid functions uh(x) defined on Rn
h, equipped with the

norms

||uh||Ch = sup
xεRnh

|uh(x)|, ||uh||Cβh = sup
xεRnh

|uh(x)|+ sup
x,y∈Rnh

|uh(x)− uh(x+ y)|
|y|β

.

Theorem 6. Suppose that assumptions (27) and (28) for the operator Axh hold. Then,
the solutions of the difference scheme (30) satisfy the following stability estimates:

max
1≤k≤N

∥∥∥D 1
2
τ u

h
k

∥∥∥
Cµh

≤M1(µ) max
1≤k≤N

∥∥fhk ∥∥Cµh , 0 ≤ µ ≤ 1,

∥∥∥{τ−1(uhk − uhk−1)
}N

1

∥∥∥
Cτ (C

µ
h )
≤M(µ) ln

1
τ + |h|

max
1≤k≤N

∥∥fhk ∥∥Cµh , 0 ≤ µ ≤ 1,∥∥∥{τ−1(uhk − uhk−1)
}N

1

∥∥∥
Cτ (C

µ+2mα
h )

≤M(α, µ) max
1≤k≤N

∥∥fhk ∥∥Cµ+2mα
h

, 0 < 2mα+ µ < 1.

The proof of Theorem 5 is based on the abstract Theorems 3, 4 and 5, the strongly
positivity of the operator Axh defined by (33) in Cµh [16] and the estimate

min
{

ln
1
τ
, 1 + ln ‖Axh‖Cµh→Cµh

}
≤M(µ) ln

1
τ + |h|

and on the following two theorems on the coercivity inequality for the solution of
the elliptic difference equation in Cβh and on the structure of the fractional space
E′α(Ch, Axh).
Theorem 7[12]. Suppose that assumptions (27) and (28) for the operator Axh hold.
Then, for the solution of the elliptic difference equation

Axhu
h(x) = ωh(x), x ∈ Rn

h (31)

the estimate ∑
2m≤|s|≤S

h−2m||∆s1
1−∆s2

1+...∆
s2n−1
n− ∆s2n

n+u
h||Cβh ≤M(σ, β)||ωh||Cβh

is valid.
Theorem 8[12]. Suppose that assumptions (27) and (28) for the operator Axh hold.
Then, for any 0 < α < 1

2m the norms in the spaces E′α(Ch, Axh) and C2mα
h are

equivalent uniformly in h.
Second, we consider the mixed boundary value problem for the fractional parabolic
equation 

∂v(t,x)
∂t +D

1
2
t v(t, x)− a(x)∂

2v(t,x)
∂x2 + σv(t, x) = f(t, x),

0 < t < 1, 0 < x < 1; v(0, x) = 0, 0 ≤ x ≤ 1,
u(t, 0) = u(t, 1), ux(t, 0) = ux(t, 1), 0 ≤ t ≤ 1,

(32)

where a(t, x) and f(t, x) are given sufficiently smooth functions and a(t, x) ≥ a > 0.
Here, σ is a sufficiently large positive constant.
The discretization of problem (32) is carried out in two steps. In the first step, let us
define the grid space

[0, 1]h = {x : xr = rh, 0 ≤ r ≤ K,Kh = 1} .
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We introduce the Banach space Cβh = Cβ ([0, 1]h) (0 < β < 1) of the grid functions
ϕh(x) = {ϕr}K−1

1 defined on [0, 1]h, equipped with the norm

∥∥ϕh∥∥
Cβh

=
∥∥ϕh∥∥

Ch
+ sup

1≤k<k+τ≤K−1

|ϕk+r − ϕk|
τβ

,

where Ch = C ([0, 1]h) is the space of the grid functions ϕh(x) = {ϕr}K−1
1 defined

on [0, 1]h, equipped with the norm∥∥ϕh∥∥
Ch

= max
1≤k≤K−1

|ϕk| .

To the differential operator A generated by the problem (32), we assign the difference
operator Axh by the formula

Axhϕ
h(x) =

{
−(a(x)ϕ−

x
)x,r + δϕr

}K−1

1
, (33)

acting in the space of grid functions ϕh(x) = {ϕr}K0 satisfying the conditions
ϕ0 = ϕK , ϕ1 − ϕ0 = ϕK − ϕK−1. With the help of Axh, we arrive at the initial value
problem{

dvh(t,x)
dt +D

1
2
t v

h(t, x) +Axhv
h(t, x) = fh(t, x), 0 < t < 1, x ∈ [0, 1]h,

vh(0, x) = 0, x ∈ [0, 1]h
(34)

for an infinite system of ordinary fractional differential equations. In the second step,
we replace problem (34) by difference scheme (4)

uhk(x)−uhk−1(x)

τ +D
1
2
τ uhk +Axhu

h
k(x) = fhk (x), fhk (x) = {f(tk, xr)}K−1

1 ,

tk = kτ, 1 ≤ k ≤ N, Nτ = 1;uh0 (x) = 0, x ∈ [0, 1]h.
(35)

Theorem 9. Let τ and h be sufficiently small numbers. Then, the solutions of the
difference scheme (35) satisfy the following stability estimates:

max
1≤k≤N

∥∥∥D 1
2
τ u

h
k

∥∥∥
Cµh

≤M1(µ) max
1≤k≤N

∥∥fhk ∥∥Cµh , 0 ≤ µ ≤ 1,

∥∥∥{τ−1(uhk − uhk−1)
}N

1

∥∥∥
Cτ (C

µ
h )
≤M(µ) ln

1
τ + h

max
1≤k≤N

∥∥fhk ∥∥Cµh , 0 ≤ µ ≤ 1,∥∥{τ−1(uhk − uhk−1)}N1
∥∥
Cτ (C

µ+2α
h )

≤M(α, µ) max
1≤k≤N

∥∥fhk ∥∥Cµ+2α
h

, 0 < 2α+ µ < 1.

The proof of Theorem 9 is based on the abstract Theorems 3, 4 and 5, the strongly
positivity of the operator Axh defined by (33) in Cµh and the estimate

min
{

ln
1
τ
, 1 + ln ‖Axh‖Cµh→Cµh

}
≤M(µ) ln

1
τ + h

and on the following theorem on the structure of the fractional space E′α(Ch, Axh).
Theorem 10 [13]. For any 0 < α < 1

2 , the norms in the spaces E′α (Ch, Axh) and C2α
h

are equivalent uniformly in h.
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