<div>SUSUMU TANABE (GSU)</div><div><div><br></div><div>TITLE: Invariants of hy pergeometric groups for Calabi--Yau complete intersections in weighted projective spaces</div><div><br></div><div>ABSTRACT. Let Y be a smooth Calabi--Yau complete intersection in a weighted projective space. We show that the space of quadratic invariants of the hypergeometric group associated with the mirror manifold of Y in the sense of Batyrev and Borisov is one-dimensional and spanned by the Gram matrix of a classical generator of the derived category of coherent sheaves on Y with respect to the Euler form. This is a confirmation of an expected consequence of the homological mirror symmetry conjecture by Kontsevitch.</div>
<div><br></div>
<div><div>Galatasaray Üniversitesi, Ortaköy, FEF9</div><div>24 KASIM 17:15 </div></div><div><br></div><div><a href="http://math.univ-lyon1.fr/~milliet/seminaire.html" target="_blank">http://math.univ-lyon1.fr/~milliet/seminaire.html</a></div>
</div><div><br></div>
<div><br></div><div><br></div><br clear="all">--<br>A. M. Uludag<br><a href="http://math.gsu.edu.tr/uludag/" target="_blank">http://math.gsu.edu.tr/uludag/</a><br>