<div dir="ltr"><br><div class="gmail_quote"><br><br><div dir="ltr"><div><span style="font-family:arial,sans-serif;font-size:13px"><br></span></div><span style="font-size:13px"><div style="font-family:arial,sans-serif"><i><font face="verdana, sans-serif">Sayın liste üyeleri,</font></i></div><div style="font-family:arial,sans-serif"><i><font face="verdana, sans-serif"><br></font></i></div><div style="font-family:arial,sans-serif"><font face="verdana, sans-serif"><i>Gebze Teknik Üniversitesi (GTÜ) Matematik Bölümü Genel Seminerleri kapsamında, 12 Aralık Cuma  günü  </i></font>Debasis Sen  (Indian Institute of Technology,  Kanpur)  bir<i style="font-family:verdana,sans-serif">   seminer verecektir. </i></div></span><span style="font-size:13px"><div style="font-family:arial,sans-serif"><font face="verdana, sans-serif"><i><br></i></font></div><div><font face="verdana, sans-serif"><i>Seminerin detayları aşağıda olup tüm  ilgililer davetlidir.</i></font></div><div style="font-family:arial,sans-serif"><i><font face="verdana, sans-serif"><br></font></i></div><div style="font-family:arial,sans-serif"><i><font face="verdana, sans-serif">Saygılarımızla,</font></i></div><div style="font-family:arial,sans-serif"><i><font face="verdana, sans-serif">Seher Tutdere & İpek Tuvay</font></i></div><div style="font-family:arial,sans-serif"><i><font face="verdana, sans-serif"> </font></i></div><div style="font-family:arial,sans-serif"><i><font face="verdana, sans-serif"><br></font></i></div><div style="font-family:arial,sans-serif"><i><font face="verdana, sans-serif">Dear All,</font></i></div><div style="font-family:arial,sans-serif"><i><font face="verdana, sans-serif"><br></font></i></div><div style="font-family:arial,sans-serif"><i>There will be a seminar in Gebze Technical University (GTU)  on 12th of December  by  </i>Debasis Sen ((Indian Institute of Technology,  Kanpur).</div></span><span style="font-size:13px"><div style="font-family:arial,sans-serif"><i><font face="verdana, sans-serif"><br></font></i></div><div style="font-family:arial,sans-serif"><i><font face="verdana, sans-serif"><u>Time  and  place</u>:</font></i><i><font face="verdana, sans-serif">  at 15:30, December  12, in Department of Mathematics, Building I, Seminar room.</font></i></div><div style="font-family:arial,sans-serif"><i><font face="verdana, sans-serif"><br></font></i></div><div style="font-family:arial,sans-serif"><br></div></span><span style="font-size:13px"><div style="font-family:arial,sans-serif"><i><font face="verdana, sans-serif"><br></font></i></div><div><font face="arial, helvetica, sans-serif"><u>Title</u>:</font><font face="verdana, sans-serif" style="font-style:italic;font-family:arial,sans-serif"> </font> Realizing Homotopy Group Actions. </div></span><span style="font-size:13px"><div style="font-family:arial,sans-serif"><br></div><div style="font-family:arial,sans-serif"><u>Abstract:</u></div><div style="font-family:arial,sans-serif"><div style="color:rgb(0,0,0);font-family:Tahoma;margin:14pt 0px"><font face="arial,sans-serif" size="1" color="#222222"><span style="font-size:12.72px">A homotopy action of a group G on a topological space X is a group homomorphism from G to the group of homotopy classes of self-homotopy equivalences of X. George Cooke described an obstruction theory for realizing a homotopy action of a finite group G on a space X by strict action. However, the resulting G-space is only determined up to a homotopy equivalence which is a G-map (Borel equivalence), and in this sense every G-space is equivalent to a free one.  So the more delicate aspects of equivariant topology are not visible in this way. </span></font><span style="font-size:12.72px;color:rgb(34,34,34);font-family:arial,sans-serif">A more informative approach to equivariant homotopy theory, due to Bredon, studies G-spaces X up to G-homotopy equivalence, that is, G-maps having G-homotopy inverses.  The purpose of this </span><span style="font-size:12.72px;color:rgb(34,34,34);font-family:arial,sans-serif;background-color:rgb(255,255,204)">talk</span><span style="font-size:12.72px;color:rgb(34,34,34);font-family:arial,sans-serif"> is to define a notion of homotopy action of a finite group in Bredon equivariant homotopy theory, and describe an associated inductive procedure for realizing such an action by a strict one. (This is a joint work with Prof. David Blanc)</span></div></div></span><div style="font-family:arial,sans-serif;font-size:13px"><span style="white-space:pre-wrap"><font face="verdana, sans-serif">All interested are kindly invited,</font></span></div><div style="font-family:arial,sans-serif;font-size:13px"><span style="white-space:pre-wrap"><font face="verdana, sans-serif">Best regards,</font></span></div><div style="font-family:arial,sans-serif;font-size:13px"><span style="white-space:pre-wrap"><font face="verdana, sans-serif">Seher Tutdere & İpek Tuvay </font></span></div><span style="font-family:arial,sans-serif;font-size:13px"><div><span style="font-family:arial,sans-serif;font-size:13px"><br></span></div></span><br></div>
</div><br></div>