<div dir="ltr"><br><div class="gmail_quote"><div dir="ltr"><span style="color:rgb(0,0,0);font-family:Times;font-size:medium">Değerli liste üyeleri,</span></div><div dir="ltr"><font color="#000000" face="Times" size="3"><br></font></div><div dir="ltr"><font color="#000000" face="Times" size="3">dün gönderdiğim seminer ilanında saat yanlışlıkla 15.00 yazılmış, listeyi meşgul ettiğim için özür diler, 11.00 olarak düzeltirim. Uyarısı için Özkan Değer hocama teşekkür ederim.</font></div><div dir="ltr"><font color="#000000" face="Times" size="3"><br></font></div><div dir="ltr"><font color="#000000" face="Times" size="3">mesut<br></font><div style="min-height:1em;color:rgb(0,0,0);font-family:Times"><br></div><div style="min-height:1em;color:rgb(0,0,0);font-family:Times">Communications in Algebra dergisinin editörlerinden Profesör Edmund R.Puczylowski bölümümüzü (Prof. Dr. Adnan Tercan hocamızın davetlisi olarak) ziyaret edecektir. Haftaya Pazartesi detayları aşağıda ve ekte verilen bir konuşma yapacaktır. Herkesi bekliyoruz. </div><div style="min-height:1em;color:rgb(0,0,0);font-family:Times"><br></div><div style="min-height:1em;color:rgb(0,0,0);font-family:Times">En iyi dileklerimle</div><div style="min-height:1em;color:rgb(0,0,0);font-family:Times">mesut</div><div style="min-height:1em;color:rgb(0,0,0);font-family:Times"><br></div><div style="min-height:1em;color:rgb(0,0,0);font-family:Times">--------</div><div style="min-height:1em;color:rgb(0,0,0);font-family:Times"><blockquote type="cite" style="border-left-width:1px;border-left-style:solid;border-left-color:rgb(0,0,255);padding-left:13px;margin-left:0px"><div style="min-height:1em"><div style="min-height:1em"><p style="font-size:14px;font-family:'Times New Roman';color:rgb(35,35,35);margin:1px 0px!important"><b>Tarih (Date) :</b> 15.12.2014, Pazartesi (Monday) </p><p style="font-size:14px;font-family:'Times New Roman';color:rgb(35,35,35);min-height:16px;margin:1px 0px!important"> </p><p style="font-size:14px;font-family:'Times New Roman';color:rgb(35,35,35);margin:1px 0px!important"><b>Saat (Time):</b> 11:00 </p><p style="font-size:14px;font-family:'Times New Roman';color:rgb(35,35,35);min-height:16px;margin:1px 0px!important"><br></p><p style="font-size:14px;font-family:'Times New Roman';color:rgb(35,35,35);margin:1px 0px!important"><b>Yer (Place):</b> Yaşar ATAMAN Seminer Salonu</p><p style="font-size:14px;font-family:'Times New Roman';color:rgb(35,35,35);min-height:16px;margin:1px 0px!important"><br></p><p style="font-size:14px;font-family:'Times New Roman';margin:1px 0px!important"><span style="color:rgb(35,35,35)"><b>Konuşmacı (Speaker):</b> </span>Edmund R.Puczylowski </p><p style="font-size:14px;font-family:'Times New Roman';margin:1px 0px!important"><span style="color:rgb(35,35,35)"> (</span>Institute of Mathematics, University of Warsaw <span style="color:rgb(35,35,35)">)</span></p><p style="font-size:14px;font-family:'Times New Roman';margin:1px 0px!important"><span style="color:rgb(35,35,35)"><b>Başlık (Title) :</b> </span>On linear properties of the Goldie dimension</p><p style="font-size:14px;font-family:'Times New Roman';color:rgb(35,35,35);margin:1px 0px!important"><b>Özet (Abstract) : </b></p><p style="text-align:justify;font-size:14px;margin:1px 0px!important">The Goldie dimension u(M) of a module M is defined as the supremum of all cardinalities λ such that M contains the direct sum of λ non-zero submodules. This gives a generalization of the linear dimension from linear spaces to modules. The linear dimension can be characterized in several other ways and this makes that it is so useful tool in many studies. In this context it is natural to ask which (or how far) the fundamental properties of the linear dimension can be extended to the Goldie dimension. Problems of that sort were studied in many papers. The aim of the talk is to present some old and new results concerning this topic. We will pay a particular attention to the dimension modules, i.e., modules M such that for arbitrary its submodules A, B, </p><p style="text-align:justify;font-size:14px;margin:1px 0px!important">u(A + B) + u(A ∩ B) = u(A) + u(B).</p><p style="font-size:13px;font-family:Arial;color:rgb(26,26,26);min-height:15px;margin:1px 0px!important"><br></p><p style="font-size:14px;font-family:'Times New Roman';color:rgb(35,35,35);margin:1px 0px!important">NOT: Konuşma sonunda çay ve pasta ikramı olacaktır.</p><p style="font-size:14px;font-family:'Times New Roman';margin:1px 0px!important"><span style="color:rgb(35,35,35)">(P.S. Tea and </span>cookies will be served after the talk<span style="color:rgb(35,35,35)">.)</span></p></div></div></blockquote><div><div style="min-height:1em"><div style="min-height:1em"><p style="font-size:14px;font-family:'Times New Roman';margin:1px 0px!important"><span style="color:rgb(35,35,35)"><br></span></p></div></div></div></div><div><div><div dir="ltr"> <br><br> Mesut Sahin<div> Associate Professor<br> Department of Mathematics<br> Hacettepe University<br> TR 06800 Beytepe </div><div> ANKARA - TURKEY<br> <a href="http://yunus.hacettepe.edu.tr/~mesut.sahin" target="_blank">http://yunus.hacettepe.edu.tr/~mesut.sahin</a></div></div></div></div>
</div>
</div><br></div>