<div dir="ltr">Değerli liste üyeleri,<br><br>MSGSÜ matematik bölümü genel seminerinde bu hafta konuşmacımız,<span style="font-size:13px;font-family:arial,sans,sans-serif">Ayşegül Yıldız Ulus</span>. Konuşmanın
detayları aşağıda. <br><br>İyi çalışmalar,<br><br>Emrah Çakçak<br><br>-------------------------------------------------------------<br><div dir="ltr"><br>Konuşmacı: <span style="font-size:13px;font-family:arial,sans,sans-serif">Ayşegül Yıldız Ulus </span>(Galatasaray Üniversitesi)<br><br><span class="im"><div style="color:rgb(80,0,80)"><font style="font-size:14px" face="Times">Başlık: Deterministic Model of Optimal Growth as an Optimization Problem</font></div><div style="color:rgb(80,0,80)"><font style="font-size:14px" face="Times"><br></font></div></span><div style="color:rgb(80,0,80)"><font face="Times"><span style="font-size:14px">Özet:
Discrete time optimal growth model is one of the important models of
the theory of economics. This simple and elegant model is described by
the presence of a social planner who maximizes the infinite sum of
discounted utilities of consumption subject to a convex one sector
production set. One useful approach to solve this problem is dynamic
programming which is in fact the study of a dynamic optimization problem
through the analysis of value functional equations. In finite horizon,
these types of problems can be solved by means of Lagrange multipliers
method. In infinite horizon optimal growth models, these multipliers
will typically belong to an infinite dimensional decision space.
Therefore, the questions whether the Lagrange multipliers exist and
whether they can be represented by a summable sequence arise. These
problems have been overcome by extending the Lagrangean to infinite
dimensional spaces and sufficient conditions for Lagrangean to be
represented by a summable sequence of multipliers are then provided. In
this talk, I will present the problem in general form and give the
extension of the Kuhn-Tucker theorem where the multipliers are
represented in (l</span><span style="font-size:14px;vertical-align:4pt">∞</span><span style="font-size:14px">)',</span><span style="font-size:14px;vertical-align:4pt"> </span><span style="font-size:14px">the dual space of l</span><span style="font-size:14px;vertical-align:4pt">∞</span><span style="font-size:14px">, and then give sufficient conditions for having an l^1</span><span style="font-size:14px;vertical-align:4pt"> </span><span style="font-size:14px">representation of the multipliers.</span></font></div><br>Zaman: 18.12.2014 16:00<br><br>Yer: MSGSÜ, Bomonti Kampüsü (<a href="http://math.msgsu.edu.tr/iletisim.html" target="_blank">Harita</a>), Matematik Bölümü Seminer Odası.<br></div></div>