<div dir="ltr"><div><div><div><div><div>Değerli liste üyeleri,<br><br>MSGSÜ matematik bölümü genel seminerlerinde bu hafta iki konuşmacımız var: 25 Aralık Perşembe 16:00'da Haluk Şengün, 26 Aralık Cuma 16:00'da Haydar Göral. Konuşmaların detayları aşağıda.<br><br><br>İyi çalışmalar,<br><br>Emrah Çakçak<br><br>-----------------------------------------<br><br></div>Konuşmacı: Haluk Şengün (University of Sheffield)<br><br></div>Başlık: Modular Forms and Elliptic Curves over Number Fields<br><br></div>Özet: The celebrated connection between elliptic curves and weight 2 newforms 
over the rationals has a conjectural extension to general number fields.
 For example, over odd degree totally real fields, one knows how to 
associate an elliptic curve to a weight 2 newform with integer Hecke 
eigenvalues. Conversely, very recent work of Freitas, Hun and Siksek 
show that over totally real fields, most elliptic curves are modular (in
 fact, over real quadratic fields, "all" are modular).<br>
<br>
Beyond totally real fields, we are at a loss at associating elliptic 
curves to weight 2 newforms. The best one can do is to "search" for the 
elliptic curve. In joint work with X.Guitart (Essen) and M.Masdeu 
(Warwick), we generalize Darmon's conjectural construction of algebraic 
points on elliptic curves to general number fields and then use this 
conjectural construction to analytically construct the elliptic curve 
starting from a weight 2 newform over a general number field, under some
 hypothesis. In the talk, I will start with a discussion of the first 
paragraph and then will sketch our method.<br><br></div>Zaman: 25.12.2014 16:00<br>Yer: MSGSÜ, Bomonti Kampüsü (<a href="http://math.msgsu.edu.tr/iletisim.html" target="_blank">Harita</a>), Matematik Bölümü Seminer Odası<br><br>-------------------------------------------------<br><br>Konuşmacı:  Haydar Göral (Université Lyon 1)<br><br></div><div>Başlık: Mann Property<br><br></div><div>Özet:  In this talk we study the pair (K,G) where K is an algebraically 
closed field and G is a multiplicative subgroup of K* with the Mann 
property. The main examples of this property comes from number theory. 
The reason of the naming like this is that H. Mann proved that the roots
 of unity has the Mann property. The theory of the pair is axiomatised 
by L. van den Dries and A. Günaydın and they prove that the pair (K,G) is stable. We first characterize the independence in the pair and this allows us to characterize the definable groups in (K,G).</div><div><br></div>Zaman: 26.12.2014 16:00<br><div>Yer: MSGSÜ, Bomonti Kampüsü (<a href="http://math.msgsu.edu.tr/iletisim.html" target="_blank">Harita</a>), Matematik Bölümü Seminer Odası<br><br><br></div></div>