<html>
<head>
<meta content="text/html; charset=UTF-8" http-equiv="Content-Type">
</head>
<body bgcolor="#FFFFFF" text="#000000">
<div class="moz-text-html" lang="x-unicode">
<div class="moz-text-flowed" style="font-family: -moz-fixed;
font-size: 12px;" lang="x-unicode"> Değerli Matematikçiler, <br>
<br>
26 Şubat Perşembe günü Peter Paule'nin Sabancı
Üniversitesinde vereceği seminere (detaylar aşağıda) sizleri
davet etmek isteriz. <br>
<br>
Prof. Dr. Peter Paule (Sembolik Hesap Araştırma Enstitüsü
direktörü, Johannes Kepler Üniversitesi, Avusturya)
kombinatorikte sembolik hesaplama, özel fonksiyonlar ve sayılar
teorisi üzerine çalışmaktadır. <br>
( <a class="moz-txt-link-freetext"
href="https://www.risc.jku.at/people/ppaule/">https://www.risc.jku.at/people/ppaule/</a>
) <br>
<br>
<br>
<br>
tarih/date: 26 Şubat 2015 Perşembe / Thursday February 26, 2015
<br>
zaman/time: 14:30-15:30 <br>
yer/locn: Sabancı Univ.*, MDBF/FENS 2008 <br>
<br>
<br>
<br>
başlık/title: Combinatorics, Modular Forms, and Computer Algebra
<br>
<br>
özet/abstract: In a joint project with George Andrews, aspects
of MacMahon's partition <br>
analysis have led us to consider broken partition diamonds, an
infinite <br>
family of combinatorial objects whose generating functions give
rise to <br>
a variety of number theoretic congruences. Recently, in the
context of <br>
modular forms, Silviu Radu has set up an algorithmic machinery
to prove <br>
such congruences automatically. The talk reports on recent
developments, <br>
some being joint work with Radu, which combine methods from
enumerative <br>
combinatorics and symbolic analysis (e.g. Riemann surfaces) with
<br>
computer <br>
algebra. <br>
<br>
<br>
<br>
Dear Mathematicians, <br>
<br>
We cordially invite you to the seminar by Peter Paule on
Thursday February 26 at Sabanci University, details above. <br>
<br>
prof. Peter Paule, PhD (director of Research Institute for
Symbolic Computation, Johannes Kepler University of Linz,
Austria) works in symbolic computation in combinatorics, special
functions, and number theory. <br>
( <a class="moz-txt-link-freetext"
href="https://www.risc.jku.at/people/ppaule/">https://www.risc.jku.at/people/ppaule/</a>
) <br>
<br>
<br>
<br>
<br>
* Sabancı Üniversitesine ulaşım: <a
class="moz-txt-link-freetext"
href="https://www.sabanciuniv.edu/tr/ulasim">https://www.sabanciuniv.edu/tr/ulasim</a>
<br>
<br>
* directions to Sabancı University: <a
class="moz-txt-link-freetext"
href="https://www.sabanciuniv.edu/en/location">https://www.sabanciuniv.edu/en/location</a>
<br>
</div>
</div>
</body>
</html>