<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"><head><META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=us-ascii"><meta name=Generator content="Microsoft Word 14 (filtered medium)"><style><!--
/* Font Definitions */
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
margin-bottom:.0001pt;
font-size:11.0pt;
font-family:"Calibri","sans-serif";
mso-fareast-language:EN-US;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:blue;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{mso-style-priority:99;
color:purple;
text-decoration:underline;}
p.MsoPlainText, li.MsoPlainText, div.MsoPlainText
{mso-style-priority:99;
mso-style-link:"Plain Text Char";
margin:0in;
margin-bottom:.0001pt;
font-size:11.0pt;
font-family:"Calibri","sans-serif";
mso-fareast-language:EN-US;}
span.EmailStyle17
{mso-style-type:personal-compose;
font-family:"Calibri","sans-serif";
color:windowtext;}
span.PlainTextChar
{mso-style-name:"Plain Text Char";
mso-style-priority:99;
mso-style-link:"Plain Text";
font-family:"Calibri","sans-serif";}
.MsoChpDefault
{mso-style-type:export-only;
font-family:"Calibri","sans-serif";
mso-fareast-language:EN-US;}
@page WordSection1
{size:8.5in 11.0in;
margin:70.85pt 70.85pt 70.85pt 70.85pt;}
div.WordSection1
{page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]--></head><body lang=TR link=blue vlink=purple><div class=WordSection1><p class=MsoPlainText>Degerli Liste uyeleri,<o:p></o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText>Matematikte alaninda seckin arastima yapmis olan lisans ogrencilerine AMS, MAA ve SIAM tarafindan verilen Morgan Odulu'nun 2015 yilindaki sahibi bilindigi uzere Levent Alpoge olmustur. <o:p></o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText>Morgan odulu bugune kadar aralarinda 2014 ICM Fields Madalyasi sahibi Manjul Bhargava'nin da bulundugu pek cok degerli matematikciye verilmistir. Morgan odulu verilenlerin listesine ve odul hakkinda daha genis bilgiye <a href="http://en.wikipedia.org/wiki/Morgan_Prize">http://en.wikipedia.org/wiki/Morgan_Prize</a> adresinden ulasilabilir.<o:p></o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText>Levent Alpoge Turk Matematik Dernegi'nin davetlisi olarak 13 Mart Cuma gunu saat 14:00’te dernegimizin bulundugu Sabanci Universitesi – Karakoy Minerva Palas'ta baslik ve ozeti asagida paylasilan konusmayi gerceklestirecektir. Tum uyelerimize ve matematikcilere duyurulur.<o:p></o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText>Levent Alpoge'nin ziyareti vesilesiyle, TMD'nin Matematik Arastirma Dostu (MAD) projesine desteklerini esirgemeyen bagiscilarimiza bir kere daha tesekkur ederiz.<o:p></o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText>TMD-Yonetim Kurulu<o:p></o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText>Title: The average elliptic curve has few integral points.<o:p></o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText>Abstract: It is a theorem of Siegel that the Weierstrass model y^2 = x^3 + Ax + B of an elliptic curve has finitely many integral points. A "random" such curve should have no points at all. I will show that the average number of integral points on such curves (ordered by height) is bounded - in fact, by 66. The methods combine a Mumford-type gap principle, LP bounds in sphere packing, and results in Diophantine approximation. <o:p></o:p></p><p class=MsoPlainText>The same result also holds (though I have not computed an explicit constant) for the families <o:p></o:p></p><p class=MsoPlainText>y^2 = x^3 + Ax, y^2 = x^3 + B, and y^2 = x^3 - n^2 x. <o:p></o:p></p><p class=MsoPlainText>If I have time I will also mention why the average is strictly smaller than one assuming the minimalist conjecture (that 50% of curves have rank zero and 50% have rank one).<o:p></o:p></p><p class=MsoNormal><o:p> </o:p></p></div></body></html>