<div dir="ltr"><div>Değerli liste üyeleri,<br><br></div>detayları aşağıda verilen bölüm seminerimize herkesi bekliyoruz.<br><br><p class="MsoNormal" style="margin-bottom:0.0001pt;line-height:normal;background:none repeat scroll 0% 0% white"><b style><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34)">--------------------------<br></span></b></p><p class="MsoNormal" style="margin-bottom:0.0001pt;line-height:normal;background:none repeat scroll 0% 0% white"><b style><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34)">Tarih (Date) :</span></b><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34)"> 04.03.2015, Çarşamba
(</span><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34)">Wednesday</span><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34)">)<span style>                    </span></span></p>

<p class="MsoNormal" style="margin-bottom:0.0001pt;line-height:normal;background:none repeat scroll 0% 0% white"><b style><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34)">Saat (Time):</span></b><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34)"> 15:00</span></p>

<p class="MsoNormal" style="margin-bottom:0.0001pt;line-height:normal;background:none repeat scroll 0% 0% white"><b style><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34)">Yer (Place):</span></b><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34)"> Yaşar ATAMAN Seminer
Salonu</span></p>

<p class="MsoNormal" style="margin-bottom:0.0001pt;line-height:normal;background:none repeat scroll 0% 0% white"><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34)"> </span></p>

<p class="MsoNormal" style="margin-bottom:12pt;line-height:normal"><b style><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34)">Konuşmacı (Speaker):</span></b><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34)"> Doç. </span><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34);background:none repeat scroll 0% 0% white">Dr. Faruk POLAT <span style> </span>(</span><span style="font-size:14pt;font-family:"Times",serif" lang="EN-US">Çankırı Karatekin University</span><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34);background:none repeat scroll 0% 0% white">)</span></p>

<p class="MsoNormal" style="margin-bottom:0.0001pt;line-height:150%"><b style><span style="font-size:14pt;line-height:150%;font-family:"Times New Roman",serif;color:rgb(34,34,34)">Başlık (Title) :</span></b><span style="font-size:14pt;line-height:150%;font-family:"Times New Roman",serif;color:rgb(34,34,34)"> </span><span style="font-size:12pt;line-height:150%;font-family:"Times New Roman",serif">On Spaces
Derivable from a Solid Sequence Space and a Non-negative Lower Triangular
Matrix</span></p>

<p class="MsoNormal" style="margin-bottom:0.0001pt;line-height:normal"><span style="font-size:12pt;font-family:"Times New Roman",serif"> </span></p>

<p class="MsoNormal" style="margin-bottom:12pt;text-align:justify;line-height:150%"><b style><span style="font-size:14pt;line-height:150%;font-family:"Times New Roman",serif;color:rgb(34,34,34)">Özet (Abstract) : </span></b><span style="font-size:12pt;line-height:150%;font-family:"Times New Roman",serif;color:rgb(34,34,34)">The scalar field will be either the real or complex numbers. Suppose that </span><strong><span style="font-family:"Calibri",sans-serif">λ</span></strong><span style="font-size:12pt;line-height:150%;font-family:"Times New Roman",serif;color:rgb(34,34,34)"> is a solid sequence
space over the scalar field and A is an infinite lower triangular matrix with
non-negative entries and positive entries on the main diagonal such that each of
its columns is in </span><strong><span style="font-family:"Calibri",sans-serif">λ</span></strong><span style="font-size:12pt;line-height:150%;font-family:"Times New Roman",serif;color:rgb(34,34,34)">. For each positive integer k,<span style>  </span>the k<sup>th</sup>
predecessor of </span><strong><span style="font-family:"Calibri",sans-serif">λ</span></strong><span style="font-size:12pt;line-height:150%;font-family:"Times New Roman",serif;color:rgb(34,34,34)"> with respect to A is the solid vector space of scalar sequences x such
that A<sup>k</sup> |x| is an element of </span><strong><span style="font-family:"Calibri",sans-serif">λ</span></strong><span style="font-size:12pt;line-height:150%;font-family:"Times New Roman",serif;color:rgb(34,34,34)">. We denote this space by </span><strong><span style="font-family:"Calibri",sans-serif">Λ<sub>k</sub></span></strong><span style="font-size:12pt;line-height:150%;font-family:"Times New Roman",serif;color:rgb(34,34,34)"> and </span><strong><span style="font-family:"Calibri",sans-serif">λ</span></strong><span style="font-size:12pt;line-height:150%;font-family:"Times New Roman",serif;color:rgb(34,34,34)"> itself will be denoted by </span><strong><span style="font-family:"Calibri",sans-serif">Λ<sub>0</sub></span></strong><span style="font-size:12pt;line-height:150%;font-family:"Times New Roman",serif;color:rgb(34,34,34)">. Under reasonable assumptions, these spaces inherit some topological
properties from </span><strong><span style="font-family:"Calibri",sans-serif">λ</span></strong><span style="font-size:12pt;line-height:150%;font-family:"Times New Roman",serif;color:rgb(34,34,34)">. We are interested in a projective limit of the infinite product of
the<span style>  </span></span><strong><span style="font-family:"Calibri",sans-serif">Λ<sub>k</sub></span></strong><span style="font-size:12pt;line-height:150%;font-family:"Times New Roman",serif;color:rgb(34,34,34)"> consisting of sequences of sequences<span style> 
</span>(x<sup>(k)</sup>) satisfying <span style> </span>A x<sup>(k)</sup>
=x<sup>(k-1)</sup> for each k>0. We show that for interesting classes of
situations including the cases when </span><strong><span style="font-family:"Calibri",sans-serif">λ</span></strong><span style="font-size:12pt;line-height:150%;font-family:"Times New Roman",serif;color:rgb(34,34,34)"> =l<sub>p</sub> for some p>1 and A is the Cesaro matrix, the space of
our interest can be non-trivial.</span></p>

<p class="MsoNormal" style="margin-bottom:0.0001pt;text-align:justify;line-height:normal"><span style="font-size:12pt;font-family:"Times New Roman",serif"> </span></p>

<p class="MsoNormal" style="margin-bottom:0.0001pt;text-align:justify;line-height:normal;background:none repeat scroll 0% 0% white"><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34)"><span style>                                                                                                      </span></span></p>

<p class="MsoNormal" style="margin-bottom:0.0001pt;line-height:normal;background:none repeat scroll 0% 0% white"><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34)">NOT: Konuşma sonunda çay ve pasta ikramı olacaktır.</span></p>

<p class="MsoNormal" style="margin-bottom:0.0001pt;line-height:normal;background:none repeat scroll 0% 0% white"><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34)">(P.S.<span style>  </span>Tea and </span><span style="font-size:14pt;font-family:"Times New Roman",serif">cookies will be
served after the talk</span><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34)">.)</span></p><br clear="all"><div><div><div><div class="gmail_signature"><div dir="ltr">  <br><br>  Mesut Sahin<div>  Associate Professor<br>  Department of Mathematics<br>  Hacettepe University<br>  TR 06800 Beytepe </div><div>  ANKARA - TURKEY<br> <a href="http://yunus.hacettepe.edu.tr/~mesut.sahin" target="_blank">http://yunus.hacettepe.edu.tr/~mesut.sahin</a></div></div></div></div>
</div></div></div>