<div dir="ltr"><div class="gmail_default" style="font-size:large"><p style="margin:0px 0px 6px;color:rgb(20,24,35);font-family:Helvetica,Arial,'lucida grande',tahoma,verdana,arial,sans-serif;font-size:14px;line-height:19.3199996948242px">İbrahim Emre Kıvanççı nın facebook undan:</p><p style="margin:0px 0px 6px;color:rgb(20,24,35);font-family:Helvetica,Arial,'lucida grande',tahoma,verdana,arial,sans-serif;font-size:14px;line-height:19.3199996948242px">"harward birincisi türk matematikçi Levent Alpöge bir konuşmasında beşiktaş forması giymiş koyu fanatik"</p><p style="margin:6px 0px 0px;display:inline;color:rgb(20,24,35);font-family:Helvetica,Arial,'lucida grande',tahoma,verdana,arial,sans-serif;font-size:14px;line-height:19.3199996948242px"><a href="https://vimeo.com/117454740" target="_blank" rel="nofollow" style="color:rgb(59,89,152);text-decoration:none">https://vimeo.com/117454740</a></p><br></div><div class="gmail_default" style="font-size:large"><br></div><div class="gmail_extra"><br><div class="gmail_quote">On Mon, Mar 2, 2015 at 12:42 AM, Turk Matematik Dernegi <span dir="ltr"><<a href="mailto:tmd@tmd.org.tr" target="_blank">tmd@tmd.org.tr</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;padding-left:1ex"><div lang="TR" link="blue" vlink="purple"><div><p>Degerli Liste uyeleri,<u></u><u></u></p><p><u></u> <u></u></p><p>Matematikte alaninda seckin arastima yapmis olan lisans ogrencilerine AMS, MAA ve SIAM tarafindan verilen Morgan Odulu'nun 2015 yilindaki sahibi bilindigi uzere Levent Alpoge olmustur. <u></u><u></u></p><p><u></u> <u></u></p><p>Morgan odulu bugune kadar aralarinda 2014 ICM Fields Madalyasi sahibi Manjul Bhargava'nin da bulundugu pek cok degerli matematikciye verilmistir. Morgan odulu verilenlerin listesine ve odul hakkinda daha genis bilgiye <a href="http://en.wikipedia.org/wiki/Morgan_Prize" target="_blank">http://en.wikipedia.org/wiki/Morgan_Prize</a> adresinden ulasilabilir.<u></u><u></u></p><p><u></u> <u></u></p><p>Levent Alpoge Turk Matematik Dernegi'nin davetlisi olarak 13 Mart Cuma gunu saat 14:00’te dernegimizin bulundugu Sabanci Universitesi – Karakoy Minerva Palas'ta baslik ve ozeti asagida paylasilan konusmayi gerceklestirecektir. Tum uyelerimize ve matematikcilere duyurulur.<u></u><u></u></p><p><u></u> <u></u></p><p>Levent Alpoge'nin ziyareti vesilesiyle, TMD'nin Matematik Arastirma Dostu (MAD) projesine desteklerini esirgemeyen bagiscilarimiza bir kere daha tesekkur ederiz.<u></u><u></u></p><p><u></u> <u></u></p><p>TMD-Yonetim Kurulu<u></u><u></u></p><p><u></u> <u></u></p><p><u></u> <u></u></p><p>Title: The average elliptic curve has few integral points.<u></u><u></u></p><p><u></u> <u></u></p><p>Abstract:  It is a theorem of Siegel that the Weierstrass model y^2 = x^3 + Ax + B of an elliptic curve has finitely many integral points. A "random" such curve should have no points at all. I will show that the average number of integral points on such curves (ordered by height) is bounded - in fact, by 66. The methods combine a Mumford-type gap principle, LP bounds in sphere packing, and results in Diophantine approximation. <u></u><u></u></p><p>The same result also holds (though I have not computed an explicit constant) for the families <u></u><u></u></p><p>y^2 = x^3 + Ax, y^2 = x^3 + B, and y^2 = x^3 - n^2 x. <u></u><u></u></p><p>If I have time I will also mention why the average is strictly smaller than one assuming the minimalist conjecture (that 50% of curves have rank zero and 50% have rank one).<u></u><u></u></p><p class="MsoNormal"><u></u> <u></u></p></div></div><br>_______________________________________________<br>
Turkmath mailing list<br>
<a href="mailto:Turkmath@listweb.bilkent.edu.tr">Turkmath@listweb.bilkent.edu.tr</a><br>
<a href="http://yunus.listweb.bilkent.edu.tr/cgi-bin/mailman/listinfo/turkmath" target="_blank">http://yunus.listweb.bilkent.edu.tr/cgi-bin/mailman/listinfo/turkmath</a><br>
<br></blockquote></div><br></div></div>