<div dir="ltr">Dear All, <div style="font-size:12.8px"><br></div>    Emek Demirci from Bristol will talk this Thursday at the Mimar Sinan math department's weekly seminar. <br><i><span style="font-size:12.8px"><br>TITLE: Rational points on horocycles and incomplete Gauss sums.</span><br style="font-size:12.8px"><br style="font-size:12.8px"><br style="font-size:12.8px"><span style="font-size:12.8px">ABSTRACT: In this seminar I will talk about the connection between the limiting distributions of rational</span><span style="font-size:12.8px"> points
 on horocycle flows and the value distribution of incomplete Gauss sums.
 A key property of the horocycle flow on a finite-area hyperbolic surface
 is that long closed horocycles are uniformly distributed. We embed 
rational points on such horocycles on the modular surface and 
investigate their equidistribution properties.</span><br style="font-size:12.8px"><br style="font-size:12.8px"><span style="font-size:12.8px">On
 the other hand, it is well known that the classical Gauss sums can be 
evaluated in closed form depending on the residue class of the number of
 terms in the sum modulo 4. This is not the case for the incomplete 
Gauss sums, where we restrict the range of summation to a sub-interval 
and study their limiting behavior at random argument as the number of 
terms goes to infinity.</span><br style="font-size:12.8px"><br style="font-size:12.8px"><span style="font-size:12.8px">If the time permits, I also establish an analogue of the weak invariance principle for incomplete Gauss sums.</span><br style="font-size:12.8px"></i><div><span style="font-size:12.8px"><br></span><br><div style="font-size:12.8px"><span style="font-size:12.8px">Place : 106, Bomonti campus, MSGSU</span></div><div style="font-size:12.8px"><span style="font-size:12.8px">Time : 16:00, Thursday, May 28<br><br></span></div><div style="font-size:12.8px"><span style="font-size:12.8px">Best,<br></span></div><span style="font-size:12.8px">Mohan Ravichandran<br><br></span></div></div>