<div dir="ltr"><span style="font-size:12.8000001907349px">Degerli Liste Üyeleri</span><div style="font-size:12.8000001907349px"><br></div><div style="font-size:12.8000001907349px">Haftaya persembe 11/06/2015  saat 14.30 da</div><div style="font-size:12.8000001907349px"><br></div><div style="font-size:12.8000001907349px">Dr Ayse Mutle Derya n'ın</div><div style="font-size:12.8000001907349px"><br></div><div style="font-size:12.8000001907349px"><div dir="ltr" style="color:rgb(0,0,0);font-family:HelveticaNeue,'Helvetica Neue',Helvetica,Arial,'Lucida Grande',sans-serif;font-size:13px"><b>"</b><span style="font-size:11px;font-family:arial,sans-serif"><b>Merge Proofness of Allocation Rules at Transferable</b></span></div><pre style="white-space:pre-wrap;color:rgb(0,0,0);font-size:11px"><b>Utility Games and A Decomposition of Transferable Utility Games"</b></pre></div><div dir="ltr" style="color:rgb(0,0,0);font-family:HelveticaNeue,'Helvetica Neue',Helvetica,Arial,'Lucida Grande',sans-serif;font-size:13px"><br></div><div style="color:rgb(0,0,0);font-family:HelveticaNeue,'Helvetica Neue',Helvetica,Arial,'Lucida Grande',sans-serif;font-size:13px">baslıklı konusmasina katilimlarinizi bekliyoruz.</div><div style="color:rgb(0,0,0);font-family:HelveticaNeue,'Helvetica Neue',Helvetica,Arial,'Lucida Grande',sans-serif;font-size:13px"><br></div><div style="color:rgb(0,0,0);font-family:HelveticaNeue,'Helvetica Neue',Helvetica,Arial,'Lucida Grande',sans-serif;font-size:13px">İyi calismalar</div><div style="color:rgb(0,0,0);font-family:HelveticaNeue,'Helvetica Neue',Helvetica,Arial,'Lucida Grande',sans-serif;font-size:13px"><br></div><div style="color:rgb(0,0,0);font-family:HelveticaNeue,'Helvetica Neue',Helvetica,Arial,'Lucida Grande',sans-serif;font-size:13px">cenap ozel </div><div style="color:rgb(0,0,0);font-family:HelveticaNeue,'Helvetica Neue',Helvetica,Arial,'Lucida Grande',sans-serif;font-size:13px"><br></div><div style="color:rgb(0,0,0);font-family:HelveticaNeue,'Helvetica Neue',Helvetica,Arial,'Lucida Grande',sans-serif;font-size:13px"><br></div><div style="color:rgb(0,0,0);font-family:HelveticaNeue,'Helvetica Neue',Helvetica,Arial,'Lucida Grande',sans-serif;font-size:13px">Abstract:</div><div style="color:rgb(0,0,0);font-family:HelveticaNeue,'Helvetica Neue',Helvetica,Arial,'Lucida Grande',sans-serif;font-size:13px"><br></div><div style="color:rgb(0,0,0);font-family:HelveticaNeue,'Helvetica Neue',Helvetica,Arial,'Lucida Grande',sans-serif;font-size:13px"><pre style="white-space:pre-wrap;font-size:11px">The content of this talk is two papers of mine. Two different problems in
cooperative game theory, which are related indirectly, are studied.  First,
I will give some basic notions related to cooperative game theory.

In the first paper, different notions of merge proofness for allocation
rules pertaining to transferable utility games are introduced. Relations
between these merge proofness notions are studied, and some impossibility
as well as possibility results for allocation rules are established. In the
second paper, a decomposition of transferable utility games is introduced.
Using the decomposition and the notion of minimal balanced collections, a
set of necessary and sufficient conditions for a transferable utility game
to have a singleton core is given.

I will talk about both of the problems and give the relation between the
two problems. The level of the talk is suitable for any listener who knows
basic mathematics.</pre></div><div style="font-size:12.8000001907349px"><img src="https://ssl.gstatic.com/ui/v1/icons/mail/images/cleardot.gif" class=""></div></div>