<div dir="ltr">Degerli Liste uyeleri<div><br></div><div>16/09/2015 çcarsamba gunu Celal bayar Universitesinden Dr Ozgur EGE "Digital Approximate Fixed Points and Universal Functions" baslikli bir konusma verecektir.</div><div><br></div><div>Herkes davetlidir.</div><div><br></div><div>Selamlar ve iyi calismalar</div><div><br></div><div>cenap ozel</div><div><br></div><div><br></div><div>Ter: Dokuz Eylul Universitesi matematik Bolumu B206 Seminer salonu</div><div><br></div><div>tarih: 16/09/2015 saat 15.30</div><div><br></div><div>ozet: Digital Approximate Fixed Points and Universal Functions </div><div><br></div><div> Ozgur EGE </div><div><br></div><div>Department of Mathematics, Celal Bayar University, </div><div>Muradiye, 45140, Manisa, Turkey </div><div>E-mail: <a href="mailto:ozgur.ege@cbu.edu.tr">ozgur.ege@cbu.edu.tr</a> </div><div><br></div><div>Digital topology with algebraic properties is a growing area in computer vision,
image processing and fixed point theory.</div><div> Many researchers have studied the properties of digital
images using topology and algebraic topology. </div><div>Azriel Rosenfeld introduced the notion of a digitally
continuous function between digital images and showed that although digital images need not have
fixed point properties analogous to those of </div><div>the Euclidean spaces modeled by the images, there
often are approximate fixed point properties of such images. </div><div>In this talk, we introduce additional
results concerning approximate fixed points of digitally continuous functions. We have shown that
the approximate fixed point property is </div><div>preserved by digital isomorphism and by digital retraction.
Finally, we present several results concerning the relationship between universal functions and the
approximate fixed point property (AFFP).</div><div> </div><div>Keywords and phrases: Digital topology, digital image, fixed point. </div><div><br></div><div>2010 Mathematic Subject Classification: 55M20;68R10;68U10</div><div> </div><div>References </div><div>[1] L. Boxer, Digitally continuous functions, Pattern Recognition Letters, 15, 833–839, 1994.</div><div> [2] L. Boxer, A classical construction for the digital fundamental group, Journal of Mathematical
Imaging and Vision, 10, 51–62, 1999.</div><div> [3] L. Boxer, Properties of digital homotopy, Journal of Mathematical Imaging and Vision, 22,
19–26, 2005. </div><div>[4] O. Ege and I. Karaca, Fundamental properties of digital simplicial homology groups, American
Journal of Computer Technology and Application, 1(2), 25–42, 2013.</div><div> [5] O. Ege and I. Karaca, Banach fixed point theorem for digital images, Journal of Nonlinear
Science and Applications, 8(3), 237–245, 2015.</div><div> [6] O. Ege and I. Karaca, Digital homotopy fixed point theory, Comptes Rendus Mathematique, In
press, 2015.</div><div> [7] S.-E. Han, Non-product property of the digital fundamental group, Information Sciences, 171,
73–91, 2005. </div><div>[8] G.T. Herman, Oriented surfaces in digital spaces, CVGIP: Graphical Models and Image Processing,
55, 381–396, 1993.</div><div> [9] E. Khalimsky, Motion, deformation, and homotopy in finite spaces, in Proceedings IEEE Intl.
Conf. on Systems, Man, and Cybernetics, 227–234, 1987. </div><div>[10] T.Y. Kong, A digital fundamental group, Computers and Graphics, 13, 159–166, 1989.</div><div> [11] A. Rosenfeld, Continuous functions on digital pictures, Pattern Recognition Letters, 4, 177–184,
1986.</div><div><br></div></div>