ISTANBUL ANALYSIS SEMINARS

INTERNAL POLYA INEQUALITY IN SEVERAL VARIABLES

Vyacheslav P. ZAKHARYUTA

Sabancı University Faculty of Engineering and Natural Sciences

Abstract: Suppose f is a function analytic in a domain $\overline{\mathbb{C}} \smallsetminus K$, where $K \subset \mathbb{C}$ is a polynomially convex compact set, with Taylor expansion $f(z) = \sum_{k=0}^{\infty} \frac{a_k}{z^{k+1}}$ at ∞ , and $H_s(f) := \det (a_{k+l})_{k,l=0}^s$ are related Hankel determinants. The classical Polya theorem (1929) says that

$$D(f) := \limsup_{s \to \infty} |H_s(f)|^{1/s^2} \leq d(K),$$

where d(K) is the transfinite diameter of K introduced by Fekete in 1923.

In our talk will be considered some multivariate internal analogs of this result. They are based on the generalized Polya inequality for compacta [1] and on the notion of internal transfinite diameter $d(a, \partial D)$ of the boundary of a domain $D \subset \mathbb{C}^n$ viewed from a given point $a \in D$ (suggested in [2] and slightly modified here).

The presented results are joint with Ozan Günyüz.

References

- [1] V. Zakharyuta, "Transfinite diameter, Chebyshev constants, and capacities for a compactum in \mathbb{C}^n ," Mat. Sb. (N.S.) 96 (138) (1975), 374–389.
- [2] V. Zakharyuta, "Internal characteristics of domains in \mathbb{C}^n ," Ann. Polon. Math. 111 (2014), no. 3, 215–236.

Date: November 13, 2015

Time: 15:40

Place: Sabancı University, Karaköy Communication Center Bankalar Caddesi 2, Karaköy 34420, İstanbul