<div dir="ltr"><div id=":1ky" class="" style="margin-bottom:0px;margin-left:0px;padding-bottom:5px"><div id=":1kx" class="" style="overflow:hidden"><div dir="ltr" style=""><span style="font-size:12.8px">Değerli Liste üyeleri,</span><br><br><span style="font-size:12.8px">Dokuz Eylül Üniversitesi Matematik Bölüm Seminerleri kapsamında, 11 Aralık 2015 Cuma günü saat 13:30'da Sinem Odabaşı (Universidad de Murcia) konuşma yapacaktır. Konuşma ile ilgili detaylar şöyledir.</span><br><br><div style="font-size:12.8px">---------------------------------------------</div><div style=""><span style="font-size:12.8px">Speaker: Sinem Odabaşı</span><br><br><span style="font-size:12.8px">Title: </span><span style="font-size:12.8px;color:rgb(0,0,0)">Pure Homological Algebra on </span><span style="font-size:12.8px;color:rgb(0,0,0)">Grothendieck</span><span style="font-size:12.8px;color:rgb(0,0,0)"> </span><span style="font-size:12.8px;color:rgb(0,0,0)">Monoidal</span><span style="font-size:12.8px;color:rgb(0,0,0)"> Categories</span><br><br><span style="font-size:12.8px">Date and Time: 11.12.2015, at 13:30</span><br><br><span style="font-size:12.8px">Place: B206 (DEÜ Mathematics Department)</span><br><br><span style="font-size:12.8px">Abstract:</span><br><div style=""><div style=""><pre style="margin-top:0px;margin-bottom:0px"><span style="color:rgb(0,0,0)">For any commutative ring </span><span style="color:rgb(0,128,0)">$R$</span><span style="color:rgb(0,0,0)">, </span><span style="color:rgb(0,128,0)">$R\Mod$</span><span style="color:rgb(0,0,0)"> and </span><span style="color:rgb(0,128,0)">$R\mod$</span><span style="color:rgb(0,0,0)"> denote the category of </span><span style="color:rgb(0,128,0)">$R$</span><span style="color:rgb(0,0,0)">-modules and finitely presented </span><span style="color:rgb(0,128,0)">$R$</span><span style="color:rgb(0,0,0)">-modules, respectively. Then </span><span style="color:rgb(0,128,0)">$R$</span><span style="color:rgb(0,0,0)"> may be viewed as an additive category having just one object </span><span style="color:rgb(0,128,0)">$R$</span><span style="color:rgb(0,0,0)"> with morphism group </span><span style="color:rgb(0,128,0)">$\Hom(R,R) :=R$</span><span style="color:rgb(0,0,0)">. Then </span><span style="color:rgb(0,128,0)">$R\Mod$</span><span style="color:rgb(0,0,0)"> is just the category </span><span style="color:rgb(0,128,0)">$\Add(R,\Ab)$</span><span style="color:rgb(0,0,0)"> of additive </span><span style="color:rgb(0,0,0)">abelian</span><span style="color:rgb(0,0,0)"> group valued functors. Conversely, for a small additive category </span><span style="color:rgb(0,128,0)">$A$</span><span style="color:rgb(0,0,0)">, </span><span style="color:rgb(0,128,0)">$\Add(A,\Ab)$</span><span style="color:rgb(0,0,0)"> can be seen as a generalization of a ring. This comparison between modules and functors plays an important role in (Relative) Homological Algebra and Representation Theory. Among them, it helps us to handle the pure-exact structure in </span><span style="color:rgb(0,128,0)">$R\Mod$</span><span style="color:rgb(0,0,0)"> as the usual exact structure of certain subcategories of </span><span style="color:rgb(0,128,0)">$S\Mod$</span><span style="color:rgb(0,0,0)">, for some ring </span><span style="color:rgb(0,128,0)">$S$</span><span style="color:rgb(0,0,0)"> with enough idempotents. These  correspondences are precisely given by functors </span><span style="color:rgb(0,128,0)">$\Hom(-,-)$</span><span style="color:rgb(0,0,0)"> and </span><span style="color:rgb(0,128,0)">$-\otimes -$</span><span style="color:rgb(0,0,0)">. In </span><span style="color:rgb(128,0,0)">\cite</span><span style="color:rgb(0,0,0)">{CB},  it was shown that the </span><span style="color:rgb(0,128,0)">$\Hom$</span><span style="color:rgb(0,0,0)"> functor would continue doing its duty for any additive category </span><span style="color:rgb(0,128,0)">$\mathcal{A}$</span><span style="color:rgb(0,0,0)"> whenever </span><span style="color:rgb(0,128,0)">$\mathcal{A}$</span><span style="color:rgb(0,0,0)"> is locally finitely</span></pre>
<pre style="margin-top:0px;margin-bottom:0px"><span style="color:rgb(0,0,0)">presentable.</span></pre>
<pre style="margin-top:0px;margin-bottom:0px"></pre>
<pre style="margin-top:0px;margin-bottom:0px"><span style="color:rgb(0,0,0)">In this talk, we claim to work on the second case, i.e., the link between purity and functor categories through the tensor functor </span><span style="color:rgb(0,128,0)">$-\otimes -$</span><span style="color:rgb(0,0,0)"> when a category </span><span style="color:rgb(0,128,0)">$\V$</span><span style="color:rgb(0,0,0)"> has a symmetric closed </span><span style="color:rgb(0,0,0)">monoidal</span><span style="color:rgb(0,0,0)"> structure </span><span style="color:rgb(0,128,0)">$\otimes$</span><span style="color:rgb(0,0,0)">. For that, we are needed to deal with not only additive but also </span><span style="color:rgb(0,128,0)">$\V$</span><span style="color:rgb(0,0,0)">-enriched functors. Then we see that the theory can be developed for </span><span style="color:rgb(0,0,0)">Grothendieck</span><span style="color:rgb(0,0,0)"> and locally finitely presentable base categories. Later, we see  the applicability of the result on certain </span><span style="color:rgb(0,0,0)">nontrivial</span><span style="color:rgb(0,0,0)"> examples  such as the category of complexes  and quasi-coherent sheaves.   This is a joint work with </span><span style="color:rgb(0,0,0)">Henrik</span><span style="color:rgb(0,0,0)"> Holm.</span></pre><pre style="margin-top:0px;margin-bottom:0px"><span style="color:rgb(0,0,0)"><br></span></pre><pre style="margin-top:0px;margin-bottom:0px"><font color="#000000">References
[Craw94] Crawley-Boevey, W. (1994). Locally  nitely presented additive categories. Comm. Algebra 22, 1641-1674.
[EEO14] Enochs, E.E.; Estrada, E. & Odaba s , S. (2014). Pure injective and absolutely pure sheaves. P. Edinburgh Math. Soc. In press.
[EGO14] Estrada, S.; Gillespie, J & Odaba s , S. (2014). Pure exact structures and the pure derived category of a scheme. Submitted.<br></font></pre><pre style="margin-top:0px;margin-bottom:0px"><span style="font-family:arial,sans-serif;font-size:12.8px">------------------------------</span><span style="font-family:arial,sans-serif;font-size:12.8px">---------------</span><br></pre></div></div><br><br><br><br><span style="font-size:12.8px">Saygılarımla,</span><br><br><span style="font-size:12.8px">--</span><br><span style="font-size:12.8px">Celal Cem Sarıoğlu</span></div><div style="font-size:12.8px"><br></div></div><div class="" style="font-size:12.8px"></div></div></div><div class="" id=":1m2" style="font-size:12.8px"></div></div>