<div dir="ltr"><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><div>Degerli liste uyeleri, </div></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><br></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">Thomas Mueller (Queen Mary University of London) 6 Ocak Carsamba gunu <span>Sabanci </span>Universitesi'nde bir konusma yapacaktir. Asagida detaylarini bulacaginiz bu etkinlige katiliminiz bizi mutlu edecektir.</div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><br></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">iyi gunler dilegiyle</div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><br></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">canan kasikci</div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><br></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">Ulasim icin: </div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><div><a href="http://www.sabanciuniv.edu/en/transportation/shuttle-hours" target="_blank">http://www.sabanciuniv.edu/en/transportation/shuttle-hours</a> </div><div><br></div><div><br></div><div><strong>.......................................</strong></div><div><br></div><div><strong><br></strong></div><div><strong>Title: </strong>Explicit coefficient asymptotics, asymptotic representation <span style="font-family:arial,helvetica,sans-serif">theory, universal groups for free R-tree actions, congruences for combinatorial </span><span style="font-family:arial,helvetica,sans-serif">sequences, and more..</span></div><div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><span style="font-family:arial,helvetica,sans-serif"><br></span></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><span style="font-family:arial,helvetica,sans-serif"><strong>Date/Time/Place: 6 January, 14:30 - 16:30, FENS 2008</strong></span></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><br></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><div><strong>Abstract: </strong> I survey five of my mathematical projects ranging in time from the <font face="arial, helvetica, sans-serif">early 1990’s to the present (and future). </font></div><div><font face="arial, helvetica, sans-serif">The subject matters are taken from </font></div><div><font face="arial, helvetica, sans-serif">(i) </font><span style="font-family:arial,helvetica,sans-serif">Complex Analysis (coefficient asymptotics for entire functions of finite genus), </span></div><div><span style="font-family:arial,helvetica,sans-serif"></span><span style="font-family:arial,helvetica,sans-serif">(ii) Representation Theory (asymptotic estimates for character values, </span><span style="font-family:arial,helvetica,sans-serif">multiplicities etc related to symmetric groups), </span></div><div><span style="font-family:arial,helvetica,sans-serif">(iii) Geometric Group Theory </span><font face="arial, helvetica, sans-serif">(universal groups for free R-tree actions), </font></div><div><font face="arial, helvetica, sans-serif">(iv) Enumerative Combinatorics (a </font><span style="font-family:arial,helvetica,sans-serif">method for generating congruences modulo prime powers for combinatorial </span><font face="arial, helvetica, sans-serif">sequences), and </font></div><div><font face="arial, helvetica, sans-serif">(v) General, Combinatorial, and Geometric  Group Theory </font><span style="font-family:arial,helvetica,sans-serif">(generalised extension theory and a structure theory for groups acting on </span><span style="font-family:arial,helvetica,sans-serif">Lambda-trees).</span></div></div></div></div></div>