<div dir="ltr"><div style="width:992px;height:1403px" class=""><div style="height:150px" align="center"> <img src="http://www.turkmath.org/beta/images/kurumlogos/hacettepe.jpg" alt=""></div>               
                                                            
                                       
                                        
                                               
                    <h4 style="margin-bottom:0px" class="" align="center">Hacettepe Üniversitesi Bölüm Seminerleri</h4>                
                                                
                                                                        
                                                <div class="">Unbounded Order Continuous Operators</div>  
                                                                                                <div class="">Mohammad Marabeh</div>
                                                
                                                                                                                <div class="">ODTÜ, Türkiye</div> 
                                                   
                                                
                                                                                                <div class=""><span class="">Özet : </span>
                                                A linear operator 
between two Riesz spaces E and F is said to be
unbounded order continuous (or uo-continuous, for short) whenever it
maps each unbounded order null net in E into an unbounded order null net
 in F, and it said to be-unbounded order continuous (or uo-continuous, 
for short) if each unbounded order null sequence in E is mapped into an 
unbounded order null sequence in F.
We begin this talk by a review of some basic notions and results from 
the theory of Riesz spaces. Then we will recall the unbounded order 
convergence"(abbreviated, uo-convergence) of nets in Riesz spaces, and 
demonstrate some recent characterizations of it. Later we will give some
 properties of uo-continuous and uo-continuous operators. We will also 
characterize the uo-continuous (respectively, uo-continuous) dual of 
some well-known Riesz spaces. Finally, as an application of 
uo-convergence and uo-continuity we establish two variants of 
Brezis-Lieb lemma in Riesz spaces.

PS:This work is a part of ongoing thesis under supervision of Prof. 
Eduard Emelyanov, Orta Dogu Teknik Universitesi (ODTU).                                                                                         </div>
                                                

  
     
    Tarih
    :
    06.01.2016
  
  
     
    Saat
    :
    15:00
  
  
     
    Yer
    :
    Yaşar Ataman Salonu, Matematik Bölümü
  
  
     
    Dil
    :
                                                                                                                İngilizce 
                           
  
  
  
  
      
  
      
     
    <br>
    <br>
    <br></div><div><div class="gmail_signature"><div dir="ltr">  <br><br>  Mesut Sahin<div>  Associate Professor<br>  Department of Mathematics<br>  Hacettepe University<br>  TR 06800 Beytepe </div><div>  ANKARA - TURKEY<br> <a href="http://yunus.hacettepe.edu.tr/~mesut.sahin" target="_blank">http://yunus.hacettepe.edu.tr/~mesut.sahin</a></div></div></div></div>
</div>