<div dir="ltr"><div style="width:992px;height:1403px" class=""><div style="height:150px" align="center"> <img src="http://www.turkmath.org/beta/images/kurumlogos/hacettepe.jpg" alt=""></div>
<h4 style="margin-bottom:0px" class="" align="center">Hacettepe Üniversitesi Bölüm Seminerleri</h4>
<div class="">Unbounded Order Continuous Operators</div>
<div class="">Mohammad Marabeh</div>
<div class="">ODTÜ, Türkiye</div>
<div class=""><span class="">Özet : </span>
A linear operator
between two Riesz spaces E and F is said to be
unbounded order continuous (or uo-continuous, for short) whenever it
maps each unbounded order null net in E into an unbounded order null net
in F, and it said to be-unbounded order continuous (or uo-continuous,
for short) if each unbounded order null sequence in E is mapped into an
unbounded order null sequence in F.
We begin this talk by a review of some basic notions and results from
the theory of Riesz spaces. Then we will recall the unbounded order
convergence"(abbreviated, uo-convergence) of nets in Riesz spaces, and
demonstrate some recent characterizations of it. Later we will give some
properties of uo-continuous and uo-continuous operators. We will also
characterize the uo-continuous (respectively, uo-continuous) dual of
some well-known Riesz spaces. Finally, as an application of
uo-convergence and uo-continuity we establish two variants of
Brezis-Lieb lemma in Riesz spaces.
PS:This work is a part of ongoing thesis under supervision of Prof.
Eduard Emelyanov, Orta Dogu Teknik Universitesi (ODTU). </div>
Tarih
:
06.01.2016
Saat
:
15:00
Yer
:
Yaşar Ataman Salonu, Matematik Bölümü
Dil
:
İngilizce
<br>
<br>
<br></div><div><div class="gmail_signature"><div dir="ltr"> <br><br> Mesut Sahin<div> Associate Professor<br> Department of Mathematics<br> Hacettepe University<br> TR 06800 Beytepe </div><div> ANKARA - TURKEY<br> <a href="http://yunus.hacettepe.edu.tr/~mesut.sahin" target="_blank">http://yunus.hacettepe.edu.tr/~mesut.sahin</a></div></div></div></div>
</div>