MULTIVARIABLE OPERATOR THEORY ON DIRICHLET SPACES ON THE BALL

H. Turgay Kaptanoğlu

Matematik Bölümü, Bilkent Üniversitesi, Ankara http://www.fen.bilkent.edu.tr/~kaptan/

The generalized Dirichlet space that \mathcal{D}_q for each $q \in \mathbb{R}$ consists of holomorphic functions on the unit ball \mathbb{B} of \mathbb{C}^N and is a reproducing kernel Hilbert space. Reproducing kernels are $K_q(z, w) = (1 - \langle z, w \rangle)^{-(1+N+q)}$ for q > -(N+1) and for the remaining q are the hypergeometric functions $K_q(z, w) = {}_2F_1(1, 1; 1 - (N+q); \langle z, w \rangle)$. Here $\langle \cdot, \cdot \rangle$ is the natural inner product of \mathbb{C}^N .

If q > -1, these spaces are the standard weighted Bergman spaces A_q^2 ; for q = -1 the Hardy space H^2 ; for q < -1 the Besov spaces which we denote by B_q^2 . Continuing, if q = -(N + 1), the reproducing kernel is logarithmic and $\mathcal{D}_{-(N+1)}$ is the classical Dirichlet space. Most importantly, if q = -N, \mathcal{D}_{-N} is called the Drury-Arveson space which has a special place in operator theory.

On each \mathcal{D}_q space, the operator tuple $S_q = (M_{z_1}, \ldots, M_{z_N})$ is called the multishift, where each term is the operator of multiplication by z_j for $z = (z_1, \ldots, z_N) \in \mathbb{B}$. If p is a polynomial and T is a contraction on a Hilbert space H, the one-variable von Neumann inequality says that $||p(T)|| \leq \sup_{|z| \leq 1} |p(z)|$.

The Drury-Arveson space \mathcal{D}_{-N} was first used nontrivially by Drury (1978) who found the multivariable von Neumann inequality. This inequality has the form $||p(T)|| \leq ||p(S_{-N})||$ for a commuting N-tuple of contractions $T = (T_1, \ldots, T_N)$ and a polynomial p in N variables. Later Arveson (1998) investigated the various aspects of the space \mathcal{D}_{-N} from the point of view of multivariable operator theory.

In this talk, we will see that many results known for \mathcal{D}_{-N} ve S_{-N} can be extended to the whole Dirichlet-space family \mathcal{D}_q and the operators S_q for $q \in \mathbb{R}$ by using a little more function theory. Radial derivatives of fractional order will play a key role in many places. Several of the results are valid also on weighted symmetric Fock spaces that are more general than the \mathcal{D}_q spaces.

Every \mathcal{D}_q space is a weighted symmetric Fock space as well as a function space defined by a Sobolev-type norm. There is a von Neumann inequality with respect to every \mathcal{D}_q space. Explicitly, for a commuting tuple of contractions $T = (T_1, \ldots, T_N)$ and a polynomial of degree d in N variables, the inequality $||p(T)|| \leq \sum_{k=0}^{d} \sqrt{K_k(q)} ||p_k(S_q)||$ holds. Here p_k are the homogeneous terms of degree k of the polynomial p and the constants $K_k(q)$ are determined by \mathcal{D}_q . Continuing, the commutant of the operator S_q coincides with the multiplier algebra of the space \mathcal{D}_q . Further, the subnormal, hyponormal, essentially normal ranges of the operators S_q depend on q. Finally, the Toeplitz C^* -algebras generated by the S_q operators fit into short exact sequences.