<div dir="ltr"><div><div><div>Değerli liste üyeleri,<br><br></div>detayları aşağıda verilen seminere davetlisiniz.<br><br></div>En iyi dileklerimle,<br></div>mesut <br><div><div><div><div><div><div><div class="gmail_signature"><div dir="ltr"><div dir="ltr"><div><br></div><div><br></div><div>
<p class="MsoNormal" style="margin-bottom:0.0001pt;line-height:normal;background:white none repeat scroll 0% 0%"><b style="mso-bidi-font-weight:normal"><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34)">Tarih (Date) :</span></b><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34)"> 12.02.2016, Cuma (</span><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34)">Friday</span><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34)">)<span style="mso-spacerun:yes"> </span></span></p>
<p class="MsoNormal" style="margin-bottom:0.0001pt;line-height:normal;background:white none repeat scroll 0% 0%"><b style="mso-bidi-font-weight:normal"><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34)">Saat (Time):</span></b><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34)"> 15:00</span></p>
<p class="MsoNormal" style="margin-bottom:0.0001pt;line-height:normal;background:white none repeat scroll 0% 0%"><b style="mso-bidi-font-weight:normal"><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34)">Yer (Place):</span></b><span style="font-size:14pt;font-family:"Times New Roman",serif;color:rgb(34,34,34)"> Yaşar ATAMAN Seminer
Salonu</span></p>
</div><div>------------------------------------------------------------------------------------------------------------</div><div>Speaker: Pawel Borowka (Jagiellonian University , Krakow-Polland)</div><div><div title="21 01 2016 12:07" style="font-size:13px;line-height:16px;margin-bottom:6px;word-wrap:break-word;outline:medium none;color:rgb(38,50,56)"><div dir="ltr" style="outline:medium none"><br></div><div dir="ltr" style="outline:medium none">Title: Non-simple principally polarised abelian varieties</div></div><div style="font-size:13px;line-height:16px;margin-bottom:6px;word-wrap:break-word;outline:medium none;color:rgb(38,50,56)"><div dir="ltr" style="outline:medium none">Abstract: We will start by introducing basic definition and properties of complex abelian varieties. In particular</div></div><div style="font-size:13px;line-height:16px;margin-bottom:6px;word-wrap:break-word;outline:medium none;color:rgb(38,50,56)"><div dir="ltr" style="outline:medium none">we recall Poincare Reducibility Theorems for abelian varieties that state that an abelian variety is <br style="outline:medium none">simple or isogenous to a product of abelian varieties of smaller dimensions.<br style="outline:medium none">Then, we will improve the statement in the following way. Let Is^g_D be the locus in the moduli space <br style="outline:medium none">of principally polarised abelian varieties of dimension g that contain an abelian subvariety of at <br style="outline:medium none">most half dimension and restricted polarisation of type D. Then Is^g_D is <br style="outline:medium none">an irreducible subvariety in the moduli space and the locus of non-simple abelian <br style="outline:medium none">varieties is the countable union of all Is^g_D. Moreover, in the similar way to Humbert,<br style="outline:medium none">we will produce equations for Is^g_D in the Siegel upper half-space.</div></div></div><div>---------------------------------------------------------------------------------------------------</div><br></div></div></div></div></div></div></div></div></div></div>