<div dir="ltr"><div style="font-size:12.8px">Dear All,<br></div><div style="font-size:12.8px"><div style="font-size:12.8px">The first of  "IMBM Model Theory Meetings" will be on Friday, March 4. The first talk starts at 11:30</div><div style="font-size:12.8px">The full information is below and the poster is attached. </div><div style="font-size:12.8px"><span style="font-size:12.8px">We thank IMBM for their hospitality,</span><br></div><div style="font-size:12.8px"><div style="font-size:12.8px"><br></div><div><span style="font-size:12.8px">Özlem Beyarslan</span><br></div></div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px"><span style="font-size:12.8px"><br></span></div><div style="font-size:12.8px"><span style="font-size:12.8px">------------------------------</span><span style="font-size:12.8px">------------------------------</span><span style="font-size:12.8px">------------------------------</span><span style="font-size:12.8px">--------------</span><br></div><div style="font-size:12.8px"><div>IMBM Model Theory Meetings</div><div><br></div><div>Friday, March 4</div><div><br></div><div>11:30-12:30 Özlem Beyarslan (Boğaziçi Üniversitesi)</div><div>Title: Geometric Representation in the Theory of Pseudo-Finite Fields</div><div><br></div><div>Abstract: We will discuss the concept of "geometric representation". We will show that any finite group which is geometrically represented in a pseudo-finite field must be abelian. This result also generalises to bounded PAC fields. This is joint work with Zoe Chatzidakis.</div><div><br></div><div>14:00-15:00 Piotr Kowalski (Uniwersytet Wrocławski)</div><div>Title: Existentially closed fields with finite group actions</div><div><br></div><div>Abstract: This is joint work with (my PhD student) Daniel Hoffmann. We study Galois field extensions with a fixed finite Galois group G. We call such an extension a G-transformal field. We give geometric axioms of the theory of existentially closed G-transformal fields and call the resulting theory G-TCF. Using these axioms, we show that the underlying field of any model of G-TCF is a pseudo-algebraically closed field (abbreviated PAC). We describe purely algebraically constant fields of models of G-TCF: they are perfect PAC fields satisfying an extra "G-closedness" condition. This condition implies that the underlying PAC field is bounded, hence applying the known results about such PAC fields we conclude that the theory G-TCF is supersimple.</div><div><br></div><div><span style="font-size:12.8px">15:30-16:30</span><span style="font-size:12.8px"> </span><span style="font-size:12.8px">Ayhan Günaydın (Mimar Sinan Güzel Sanatlar Üniversitesi)</span><br></div><div>Title: Topological Study of Pairs of Algebraically Closed Fields</div><div><br></div><div>Abstract: Model theoretic study of pairs of algebraically</div><div> closed fields goes back to Keisler, who proved a</div><div> completeness result and a quantifier elimination result.</div><div> Since then there has been quite a bit of work on the</div><div> subject of expansions of fields by certain subsets.</div><div><br></div><div> In this talk, I will propose a topological study of pairs</div><div> of algebraically closed fields. The topology I will</div><div> introduce is strictly between the Zariski and Kolchin</div><div> topologies.  I will illustrate some results on the interaction of this topology and model theoretic concepts. </div></div></div><div class="" style="font-size:12.8px"></div><div><br></div>-- <br><div class="gmail_signature">Özlem Beyarslan<br><br>Bogazici Universitesi Matematik Bolumu <br>Bebek, Istanbul 34342<br>Tel: 90 212 359 6535</div>
</div>