<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1254">
<style type="text/css" style="display:none;"><!-- P {margin-top:0;margin-bottom:0;} --></style>
</head>
<body dir="ltr">
<div id="divtagdefaultwrapper" style="font-size:12pt;color:#000000;background-color:#FFFFFF;font-family:Calibri,Arial,Helvetica,sans-serif;">
<div id="divtagdefaultwrapper" style="font-size:12pt;color:#000000;background-color:#FFFFFF;font-family:Calibri,Arial,Helvetica,sans-serif;">
<p></p>
<p style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 16px;"></p>
<p class="MsoNormal"><span style="font-size:14.0pt;line-height:107%"><o:p> </o:p></span></p>
<p class="MsoNormal" style="margin-bottom: 0.0001pt; background-image: initial; background-attachment: initial; background-size: initial; background-origin: initial; background-clip: initial; background-position: initial; background-repeat: initial;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;">Sayın liste üyeleri,<o:p></o:p></span></p>
<p class="MsoNormal" style="margin-bottom: 0.0001pt; background-image: initial; background-attachment: initial; background-size: initial; background-origin: initial; background-clip: initial; background-position: initial; background-repeat: initial;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;"><o:p> </o:p></span></p>
<p class="MsoNormal" style="margin-bottom: 0.0001pt; background-image: initial; background-attachment: initial; background-size: initial; background-origin: initial; background-clip: initial; background-position: initial; background-repeat: initial;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;"><o:p></o:p></span><span style="font-family: Tahoma, sans-serif; font-size: 10pt;">Gebze Teknik Üniversitesi, Matematik Bölümü Genel Seminerleri kapsamında,</span></p>
<p class="MsoNormal" style="margin-bottom: 0.0001pt; background-image: initial; background-attachment: initial; background-size: initial; background-origin: initial; background-clip: initial; background-position: initial; background-repeat: initial;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;">18 Mart Cuma günü saat 14:00'da Dr. Tuğba AKYEL<br>
(Gebze Teknik Üniversitesi) Matematik Bölümü seminer salonunda bir seminer<o:p></o:p></span></p>
<p class="MsoNormal" style="margin-bottom: 0.0001pt; background-image: initial; background-attachment: initial; background-size: initial; background-origin: initial; background-clip: initial; background-position: initial; background-repeat: initial;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;">verecektir. Seminerin detayları aşağıda olup tüm ilgilenenler davetlidir.<br>
<br>
Saygılarımızla,<o:p></o:p></span></p>
<p class="MsoNormal" style="margin-bottom: 0.0001pt; background-image: initial; background-attachment: initial; background-size: initial; background-origin: initial; background-clip: initial; background-position: initial; background-repeat: initial;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;"> <o:p></o:p></span></p>
<p class="MsoNormal" style="margin-bottom: 0.0001pt; background-image: initial; background-attachment: initial; background-size: initial; background-origin: initial; background-clip: initial; background-position: initial; background-repeat: initial;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;">Başlık :</span><span style="font-size:10.0pt;font-family:"Tahoma",sans-serif;
mso-fareast-font-family:"Times New Roman";color:#666666;mso-fareast-language:
TR">Dairede Analitik Fonksiyonların Sınır
 Davranışı</span><span style="font-size: 10pt; font-family: Tahoma, sans-serif;"><br>
Özet   : Birim dairede sınırlı holomorf fonksiyonların sınır davranışı incelenmiş olup, sınırda Schwarz Lemması’nın farklı versiyonları ele alınmıştır.<o:p></o:p></span></p>
<p class="MsoNormal" style="margin-bottom: 0.0001pt; background-image: initial; background-attachment: initial; background-size: initial; background-origin: initial; background-clip: initial; background-position: initial; background-repeat: initial;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;">Birim dairede holomorf olan fonksiyonların bir sınıfında, sınır noktasında açısal limitin mevcutluğu varsayılarak bu noktadaki açısal türevin modülünün aşağıdan değerlendirilmeleri elde edilmiştir.
 İncelenen fonksiyonların tek katlı ve çok katlı olması halleri ayrı ayrı ele alınmış olup, elde edilen kesin eşitsizliklerde fonksiyonun bir iç noktadaki değeri ve farklı mertebeden türevleri kullanılmıştır.<o:p></o:p></span></p>
<p class="MsoNormal" style="margin-bottom: 0.0001pt; background-image: initial; background-attachment: initial; background-size: initial; background-origin: initial; background-clip: initial; background-position: initial; background-repeat: initial;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;"> <o:p></o:p></span></p>
<p class="MsoNormal" style="margin-bottom: 0.0001pt; background-image: initial; background-attachment: initial; background-size: initial; background-origin: initial; background-clip: initial; background-position: initial; background-repeat: initial;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;"> <o:p></o:p></span></p>
<p class="MsoNormal" style="margin-bottom: 0.0001pt; background-image: initial; background-attachment: initial; background-size: initial; background-origin: initial; background-clip: initial; background-position: initial; background-repeat: initial;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;">Dear all,<br>
<br>
There will be a seminar in Gebze Technical University  on 18th of<br>
March by  Dr. Tuğba AKYEL  (Gebze Technical University)<br>
Time  and  place:  At 14:00 in Department of Mathematics  Building I, Auditorium.<o:p></o:p></span></p>
<p class="MsoNormal" style="margin-bottom: 0.0001pt; background-image: initial; background-attachment: initial; background-size: initial; background-origin: initial; background-clip: initial; background-position: initial; background-repeat: initial;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;">                  
<o:p></o:p></span></p>
<p class="MsoNormal" style="margin-bottom: 0.0001pt; background-image: initial; background-attachment: initial; background-size: initial; background-origin: initial; background-clip: initial; background-position: initial; background-repeat: initial;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;">Title      : The Boundary Behaviour of the Analytic Functions in the Disc<o:p></o:p></span></p>
<p class="MsoNormal" style="margin-bottom: 0.0001pt; background-image: initial; background-attachment: initial; background-size: initial; background-origin: initial; background-clip: initial; background-position: initial; background-repeat: initial;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;">Abstract : The boundary behaviour of the bounded holomorphic function in the unit disc has been examined and the different versions of boundary Schwarz Lemma have been discussed.<o:p></o:p></span></p>
<p class="MsoNormal" style="margin-bottom: 0.0001pt; background-image: initial; background-attachment: initial; background-size: initial; background-origin: initial; background-clip: initial; background-position: initial; background-repeat: initial;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;">In a class of holomorphic functions on the unit circle, assuming the existence of angular limit on the boundary point, the estimations below of the modulus of angular derivative have been obtained.
 The value of the function in an inner point and its derivatives from different order have been used in obtained sharp inequalities.<o:p></o:p></span></p>
<p class="MsoNormal" style="margin-bottom: 0.0001pt; background-image: initial; background-attachment: initial; background-size: initial; background-origin: initial; background-clip: initial; background-position: initial; background-repeat: initial;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;"><o:p> </o:p></span></p>
<p class="MsoNormal" style="margin-bottom: 0.0001pt; background-image: initial; background-attachment: initial; background-size: initial; background-origin: initial; background-clip: initial; background-position: initial; background-repeat: initial;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;"><o:p> </o:p></span></p>
<p class="MsoNormal" style="margin-bottom: 0.0001pt; background-image: initial; background-attachment: initial; background-size: initial; background-origin: initial; background-clip: initial; background-position: initial; background-repeat: initial;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;"><o:p> </o:p></span></p>
<p></p>
</div>
<div id="divtagdefaultwrapper" style="font-size:12pt;color:#000000;background-color:#FFFFFF;font-family:Calibri,Arial,Helvetica,sans-serif;">
<p style="font-family: 'Times New Roman';"><br>
</p>
</div>
</div>
</body>
</html>