<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-3">
<style type="text/css" style="display:none;"><!-- P {margin-top:0;margin-bottom:0;} --></style>
</head>
<body dir="ltr">
<div id="divtagdefaultwrapper" style="font-size:12pt;color:#000000;background-color:#FFFFFF;font-family:Calibri,Arial,Helvetica,sans-serif;">
<p></p>
<p class="x_MsoNormal" style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 16px;">
<span style="font-size: 14pt; line-height: 19.9733px;"> </span></p>
<p class="x_MsoNormal" style="margin-bottom: 0.0001pt; font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 16px;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;">Sayın liste üyeleri,</span></p>
<p class="x_MsoNormal" style="margin-bottom: 0.0001pt; font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 16px;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;"> </span></p>
<p class="x_MsoNormal" style="margin-bottom: 0.0001pt; font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 16px;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;"></span><span style="font-family: Tahoma, sans-serif; font-size: 10pt;">Gebze Teknik Üniversitesi, Matematik Bölümü Genel Seminerleri kapsamında,</span></p>
<p class="x_MsoNormal" style="margin-bottom: 0.0001pt; font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 16px;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;">25 Mart Cuma günü saat 14:00'da Yrd. Dr. Mehmet ÖZ<br>
(Özyeğin Üniversitesi) Matematik Bölümü seminer salonunda bir seminer</span></p>
<p class="x_MsoNormal" style="margin-bottom: 0.0001pt; font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 16px;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;">verecektir. Seminerin detayları aşağıda olup tüm ilgilenenler davetlidir.<br>
<br>
Saygılarımızla,</span></p>
<p class="x_MsoNormal" style="margin-bottom: 0.0001pt; font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 16px;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;"> </span></p>
<p class="x_MsoNormal" style="margin-bottom: 0.0001pt; font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 16px;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;"></span></p>
<p class="x_MsoNormal" style="margin-bottom: 0.0001pt; font-size: 16px; font-family: Calibri, Arial, Helvetica, sans-serif;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;">Title : Survival of Branching Brownian Motion in a Random Trap Field</span></p>
<p class="x_MsoNormal" style="margin-bottom: 0.0001pt; font-size: 16px; font-family: Calibri, Arial, Helvetica, sans-serif;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;">Abstract : We study a branching Brownian motion Z evolving in R^d , where a radially decaying field of Poissonian traps is present. Each trap is a ball with constant radius. Considering a general
offspring distribution and conditioning Z on non-extinction, we find the asymptotic decay rate of the annealed probability that none of the particles of Z hits a trap. The method of proof is to use a skeleton decomposition for the GaltonWatson process underlying
Z and to show that the particles of finite line of descent do not contribute to the survival asymptotics. On the way, a convergence result on the conditional speed of branching Brownian motion is proved.</span></p>
<p></p>
<p class="x_MsoNormal" style="margin-bottom: 0.0001pt; font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 16px;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;"></span></p>
<p class="x_MsoNormal" style="margin-bottom: 0.0001pt; font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 16px;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;"> </span></p>
<p class="x_MsoNormal" style="margin-bottom: 0.0001pt; font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 16px;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;">Dear all,<br>
<br>
There will be a seminar in Gebze Technical University on 25th of<br>
March by Assist <span style="font-family: Tahoma, sans-serif; font-size: 13.3333px;">. Prof. Mehmet ÖZ</span> (Özyeğin University)<br>
Time and place: At 14:00 in Department of Mathematics Building I, Auditorium.</span></p>
<p class="x_MsoNormal" style="margin-bottom: 0.0001pt; font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 16px;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;"> </span></p>
<p class="x_MsoNormal" style="margin-bottom: 0.0001pt; font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 16px;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;">Title : Survival of Branching Brownian Motion in a Random Trap Field</span></p>
<p class="x_MsoNormal" style="margin-bottom: 0.0001pt; font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 16px;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;">Abstract : We study a branching Brownian motion Z evolving in R^d , where a radially decaying field of Poissonian traps is present. Each trap is a ball with constant radius. Considering a general
offspring distribution and conditioning Z on non-extinction, we find the asymptotic decay rate of the annealed probability that none of the particles of Z hits a trap. The method of proof is to use a skeleton decomposition for the GaltonWatson process underlying
Z and to show that the particles of finite line of descent do not contribute to the survival asymptotics. On the way, a convergence result on the conditional speed of branching Brownian motion is proved.</span></p>
<p class="x_MsoNormal" style="margin-bottom: 0.0001pt; font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 16px;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;"></span></p>
<p class="x_MsoNormal" style="margin-bottom: 0.0001pt; font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 16px;">
<span style="font-size: 10pt; font-family: Tahoma, sans-serif;"> </span></p>
<br>
<p></p>
</div>
</body>
</html>