<div dir="ltr"><div class="gmail_quote"><font style="font-family:arial,sans-serif" size="4">Değerli liste üyeleri,</font><br><font style="font-family:arial,sans-serif" size="4"><br><span class="gmail-il">MSGSÜ</span> Matematik Bölümü Genel Seminerleri'nde bu dönemki ilk konuşmacımız Boğaziçi Üniversitesi Matematik Bölümü'nden Çağrı Karakurt<span></span>. </font><font style="font-family:arial,sans-serif" size="4"><br>Konuşma özeti ektedir</font><font style="font-family:arial,sans-serif" size="4">.<br><br>Seminerde görüşmek üzere,</font><font style="font-family:arial,sans-serif" size="4"><br><br>Selamlar,</font><font style="font-family:arial,sans-serif" size="4"><br><br>Kıvanç Ersoy<br></font><font size="4"><font size="6"><br><br>------------------------------<wbr>------------<br><br></font></font></div><div style="text-align:center" class="gmail_quote"><font size="6"><b><span class="gmail-il">MSGSÜ</span> Mathematics <span class="gmail-il">Seminar</span></b><br><br></font></div><div><div style="text-align:center"><font size="4"><font size="6">Çağrı Karakurt<br></font><br><b>Distinct Stein structures on contractible 4-manifolds</b><b><br></b></font><br><br><div style="text-align:left"><font size="4">Stein manifolds are special compact subsets of affine algebraic
varieties which play an important role in complex/symplectic geometry
and singularity theory. Due to Eliashberg's topological
characterization, the existence and uniqueness of Stein structures on
n-dimensional manifolds are well-understood for n>4, but are more
challenging when n=4. I will give a brief survey on these problems and
talk about a recent construction done in collaboration with Oba and
Ukida. <br></font></div></div><div dir="ltr"><br><font size="4"><font size="4"><br><br><br><span class="gmail-il">MSGSÜ</span>, Bomonti Kampüsü, <br><br>Matematik Bölümü Seminer <span style="background-color:rgb(255,255,204)"></span>Odası.<br><br>06.10.2016, Perşembe, 16:00</font></font></div></div></div>