<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<style type="text/css" style="display:none"><!--P{margin-top:0;margin-bottom:0;} --></style>
</head>
<body dir="ltr" style="font-size:12pt;color:#000000;background-color:#FFFFFF;font-family:Calibri,Arial,Helvetica,sans-serif;">
<p><font style="font-family:Arial,Helvetica,sans-serif" size="3" color="black"><span dir="ltr" style="font-size:12pt; background-color:white">Dear all,<br>
<br>
On Wednesday 26 October <span style="white-space:nowrap">Mufit Sezer</span> (Bilkent University) will give a talk in the Bilkent Algebra seminar.<br>
The title of his talk is<br>
"On depth modulo transfer ideals<span style="white-space:nowrap"><font size="2"><span style="font-size:10pt;"></span></font></span>".<br>
<br>
Abstract:<br>
</span></font></p>
<p><font style="font-family:Arial,Helvetica,sans-serif" size="3" color="black"><span dir="ltr" style="font-size:12pt; background-color:white"></span></font></p>
<font style="font-family: Arial,Helvetica,sans-serif; font-size: 12pt;" size="3" color="black"><span dir="ltr" style="background-color: white;">Tataro recently proved that the quotient of sums of all relative<br style="">
transfer ideals in an invariant ring is a Cohen-Macaulay ring. We provide<br style="">
an elementary proof of this for a P-group. Also we prove a lower bound<br style="">
for the depth modulo an arbitrary transfer ideal. (joint with E. Elmer)<br>
<br>
<br>
Time: 10.40,<br>
Place: Mathematics Department Seminar Room SA-141.<br>
<br>
Best regards,<br>
<br>
Anargyros Katsampekis</span></font>
</body>
</html>