<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<style type="text/css" style="display:none"><!--P{margin-top:0;margin-bottom:0;} --></style>
</head>
<body dir="ltr" style="font-size:12pt;color:#000000;background-color:#FFFFFF;font-family:Calibri,Arial,Helvetica,sans-serif;">
<span style="font-family: Arial,Helvetica,sans-serif; font-size: 12pt;"><font style="" color="black"><span dir="ltr" style="font-size:12pt; background-color:white">Dear all,<br>
<br>
On Thursday 1 December Marius Vladoiu<span style="white-space:nowrap"></span> (University of Bucharest) will give a talk in the Bilkent Algebra seminar.<br>
The title of his talk is<br>
"</span></font><font style="" color="black"><span dir="ltr" style="background-color: white;"><span dir="ltr" style=""><font style="" color="black"><span style="background-color: white;"><span dir="ltr" style="">The defining matrices of self-dual projective
toric varieties</span></span></font></span><span style="white-space:nowrap"><font size="2"><span style="font-size:10pt"></span></font></span>".<br>
<br>
Abstract:<br>
</span></font></span><span style="font-size:12pt">
<p><font style="font-family:Arial,Helvetica,sans-serif" size="3" color="black"><span dir="ltr" style="font-size:12pt; background-color:white"></span></font></p>
<font style="font-family:Arial,Helvetica,sans-serif" color="black"><span dir="ltr" style="background-color:white"><span dir="ltr" style=""><span style="background-color:white"></span></span></span></font></span><span style="font-size: 12pt; font-family: Arial,Helvetica,sans-serif;"><font style="" color="black"><span dir="ltr" style="background-color: white;"><font style="" color="black"><span style="background-color: white;"><span dir="ltr" style="">Bourel,
Dickenstein and Rittatore characterized (in 2011) the self-dual projective toric varieties $X_A\subset {\textbf P}(V)$ equivariantly embedded in terms of the combinatorics of the associated configuration of weights and also in terms of the geometry of the
action of the torus. In an ongoing joint work with Apostolos Thoma we complete their classification by describing all of the matrices $A$ such that $X_A$ is a self-dual projective toric variety. The aim of this talk is to explain this result. The main ingredient
needed for this is a combinatorial classification of all toric ideals given by Sonja Petrovic, Apostolos Thoma and myself in 2015. Self-dual varieties are a special case of defective varieties, and the complete classification of defective projective toric
varieties in an equivariant embedding is open in full generality.</span></span></font><br>
<br>
Time: 11.00,<br>
Place: Mathematics Department Seminar Room SA-141.<br>
<br>
Best regards,<br>
Anargyros Katsampekis</span></font></span>
</body>
</html>