<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1254">
<style type="text/css" style="display:none;"><!-- P {margin-top:0;margin-bottom:0;} --></style>
</head>
<body dir="ltr">
<div id="divtagdefaultwrapper" dir="ltr" style="font-size:12pt; color:#000000; font-family:Calibri,Arial,Helvetica,sans-serif">
<p><br>
</p>
<div id="Signature">
<div id="divtagdefaultwrapper" style="font-size:12pt; color:#000000; background-color:#FFFFFF; font-family:Calibri,Arial,Helvetica,sans-serif">
<p></p>
<p class="MsoNormal"><span style="">Sayin Liste Uyeleri,<br>
<br>
Gebze Teknik Üniversitesi (GTU</span>) <span style="">Matematik Bölümü Genel Seminerleri kapsamında,<br>
10 Mart Cuma günü saat 14:00'da Zafeirakis Zafeirakopoulos</span><span style=""> (Gebze Teknik Üniversitesi) bir seminer  verecektir. Seminerin detayları Aşağıda olup tüm ilgilenenler davetlidir.<br>
<br>
</span></p>
<p class="MsoNormal"><span style=""><br>
</span></p>
<p class="MsoNormal"><span style="">Dear all,<br>
<br>
There will be a seminar in Gebze Technical University (GTU) on 10th of<br>
March by </span><span style="font-family:Calibri,Arial,Helvetica,sans-serif; font-size:16px">Zafeirakis Zafeirakopoulos</span><span style="font-family:Calibri,Arial,Helvetica,sans-serif; font-size:16px"> </span><span style=""> (GTU).<br>
Time  and  place:  At 14:00 in Department of Mathematics, Building I, Seminar room.<br>
<br>
Title: <span>Polyhedral Omega: Solving Linear Diophantine Systems</span></span></p>
<p class="MsoNormal"><span style=""><span></span><br>
Abstract: <span>Polyhedral Omega is a new algorithm for solving linear Diophantine systems (LDS), i.e., for computing a multivariate rational function representation of the set of all non-negative integer solutions to a system of linear equations and inequalities.
 Polyhedral Omega combines methods from partition analysis with methods from polyhedral geometry. In particular, we combine MacMahon’s iterative approach based on the Omega operator and explicit formulas for its evaluation with geometric tools such as Brion
 decomposition and Barvinok’s short rational function representations. This synthesis of ideas makes Polyhedral Omega by far the simplest algorithm for solving linear Diophantine systems available to date.</span></span></p>
<p class="MsoNormal"><span style=""><br>
</span></p>
<p class="MsoNormal"><span style=""><span>Saygılarımızla.</span><br>
</span></p>
<p class="MsoNormal"><span style="">Düzenleme Komitesi Adına</span></p>
<p class="MsoNormal"><span style="">Dr. Işıl Öner<br>
<br>
</span></p>
<p class="MsoNormal"><span style="font-size:10pt; line-height:107%; font-family:"Segoe UI",sans-serif; color:rgb(33,33,33)"> </span></p>
<br>
<p></p>
<p></p>
</div>
</div>
</div>
</body>
</html>