<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-9">
<style type="text/css" style="display:none;"><!-- P {margin-top:0;margin-bottom:0;} --></style>
</head>
<body dir="ltr">
<div id="divtagdefaultwrapper" dir="ltr" style="font-size:12pt; color:#000000; font-family:Calibri,Arial,Helvetica,sans-serif">
<p></p>
<p class="MsoNormal"><span style="">Sayin Liste Uyeleri,<br>
<br>
Gebze Teknik Üniversitesi (GTU</span>) <span style="">Matematik Bölümü Genel Seminerleri kapsamında,<br>
24 Mart Cuma günü saat 14:00'da Gülçin M. Muslu</span><span style=""> (İstanbul Teknik Üniversitesi) bir seminer verecektir. Seminerin detayları aşağıda olup tüm ilgilenenler davetlidir.<br>
</span></p>
<p class="MsoNormal"><span style=""></span></p>
<p class="MsoNormal"><span style=""><br>
Dear all,<br>
<br>
There will be a seminar in Gebze Technical University (GTU) on 24th of<br>
March by </span>Gülçin M. Muslu<span style=""> (Istanbul Technical University).</span></p>
<p class="MsoNormal"><span style=""><br>
Time and place: At 14:00 in Department of Mathematics, Building I, Seminar room.<br>
<br>
Title: <span style="font-size:12pt">Numerical Solution for a General Class of </span><span style="font-size:12pt">Nonlocal Nonlinear Wave Equation</span><br>
Abstract: <span style="font-size:12pt">In this talk, we consider a general class of nonlocal nonlinear wave equa-</span></span></p>
<div>tion arising in one-dimensional nonlocal elasticity. The model involves a</div>
<div>convolution operator with a general kernel function whose Fourier transform</div>
<div>is nonnegative. We propose a Fourier collocation numerical method for the</div>
<div>nonlocal nonlinear wave equation. We rst test our scheme for some ex-</div>
<div>amples of nonlocal nonlinear wave equation, such as generalized improved</div>
<div>Boussinesq equation and the higher-order Boussinesq equation which arise</div>
<div>from the suitable choices of the kernel function. We prove the convergence of</div>
<div>the semi-discrete schemes in an appropriate energy spaces. We consider three</div>
<div>test problems concerning the propagation of a single solitary wave, the inter-</div>
<div>action of two solitary waves and a solution that blows-up in nite time. We</div>
<div>then extend our convergence proofs to the nonlocal nonlinear wave equation</div>
<div>including more general kernels. To understand the structural properties of</div>
<div>the solutions of nonlocal nonlinear wave equation, we present some numerical</div>
<div>results illustrating the e ects of the kernel function on the solutions.</div>
<div>This is a joint work with H. Borluk and G. Topkarci.</div>
<div>This work has been supported by the Scienti c and Technological Research</div>
<div>Council of Turkey (TUBITAK) under the project MFAG-113F114.</div>
<div><br>
</div>
<span id="ms-rterangepaste-start"></span>
<p class="MsoNormal" style="font-family:Calibri,Arial,Helvetica,sans-serif,"Apple Color Emoji","Segoe UI Emoji",NotoColorEmoji,"Segoe UI Symbol","Android Emoji",EmojiSymbols; font-size:16px">
<span style="">Saygılarımızla.</span></p>
<p class="MsoNormal" style="font-family:Calibri,Arial,Helvetica,sans-serif,"Apple Color Emoji","Segoe UI Emoji",NotoColorEmoji,"Segoe UI Symbol","Android Emoji",EmojiSymbols; font-size:16px">
<span style="">Düzenleme Komitesi Adına</span></p>
<p class="MsoNormal" style="font-family:Calibri,Arial,Helvetica,sans-serif,"Apple Color Emoji","Segoe UI Emoji",NotoColorEmoji,"Segoe UI Symbol","Android Emoji",EmojiSymbols; font-size:16px">
<span style="">Dr. Isil Oner</span></p>
<span id="ms-rterangepaste-end"></span><br>
<br>
<p></p>
<br>
<p></p>
<p><br>
</p>
<div id="Signature">
<div id="divtagdefaultwrapper" style="font-size:12pt; color:#000000; background-color:#FFFFFF; font-family:Calibri,Arial,Helvetica,sans-serif">
<p></p>
</div>
</div>
</div>
</body>
</html>