On a conjecture of Morgan and Mullen

Giorgos Kapetanakis (Sabancı Üniversitesi)
Joint work with T. Garefalakis

Abstract

Let \mathbf{F}_{q} be the finite field of cardinality q and $\mathbf{F}_{q^{n}}$ its extension of degree n, where q is a prime power and n is a positive integer. A generator of the multiplicative group $\mathbf{F}_{q^{n}}^{*}$ is called primitive. Besides their theoretical interest, primitive elements of finite fields are widely used in various applications, including cryptographic schemes, such as the Diffie-Hellman key exchange.

An \mathbf{F}_{q}-normal basis of $\mathbf{F}_{q^{n}}$ is an $\mathbf{F}_{q^{-}}$-basis of $\mathbf{F}_{q^{n}}$ of the form $\left\{x, x^{q}, \ldots, x^{q^{n-1}}\right\}$ and the element $x \in \mathbf{F}_{q^{n}}$ is called normal over \mathbf{F}_{q}. These bases bear computational advantages for finite field arithmetic, so they have numerous applications, mostly found in coding theory and cryptography. An element of $\mathbf{F}_{q^{n}}$ that is simultaneously normal over $\mathbf{F}_{q^{l}}$ for all $l \mid n$ is called completely normal over \mathbf{F}_{q}.

It is well-known that primitive and normal elements exist for every q and n. The existence of elements that are simultaneously primitive and normal is also well-known for every q and n.

Further, it is also known that for all q and n there exist completely normal elements of $\mathbf{F}_{q^{n}}$ over \mathbf{F}_{q}. Morgan and Mullen [Util. Math., 49:21-43, 1996], took the next step and conjectured that for any q and n, there exists a primitive completely normal element of $\mathbf{F}_{q^{n}}$ over \mathbf{F}_{q}.

In order to support their claim, they provided examples for such elements for all pairs (q, n) with $q \leq 97$ and $q^{n}<10^{50}$. This conjecture is yet to be established for arbitrary q and n, but instead we have partial results, covering special types of extensions. Recently, Hachenberger [Des. Codes Cryptogr., 80(3):577586, 2016] using elementary methods, proved the validity of the Morgan-Mullen conjecture for $q \geq n^{3}$ and $n \geq 37$.

In this work, we use character sum techniques and prove the validity of the Morgan-Mullen conjecture for all q and n, provided that $q>n$. In the talk, the previous results will briefly be presented, our proof will be outlined and possible improvements will be discussed.

