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In this talk, I will show that every point in the hyperbolic 3-space is
moved at a distance at least 1

2 log
(
12 · 3k−1 − 3

)
by one of the isometries of

length at most k ≥ 2 in a 2-generator Klenian group Γ which is torsion-free,
not co-compact and contains no parabolic. Also I will propose some lower
bounds for the maximum of hyperbolic displacements given by symmetric
subsets of isometries in purely loxodromic finitely generated free Kleinian
groups.
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