A Certain Class of Harmonic Mappings Related to Functions of Bounded Radius Rotation

Yasemin Kahramaner $^{1,*},$ Yaşar Polatoğlu 2 and Arzu Yemişci Şen 2

 $^{1}\,$ Department of Mathematics, İstanbul Ticaret University, İstanbul, Turkey ykahramaner@iticu. edu.tr

Department of Mathematics and Computer Sciences, İstanbul Kültür University, İstanbul, Turkey

y.polatoglu@iku.edu.tr; asen@iku.edu.tr

Abstract. Let R_k be the class of functions with bounded radius rotation and let S_H be the class of sense-preserving harmonic mappings. In the present paper we investigate a certain class of harmonic mappings related to the function of bounded radius rotation.

Keywords: Harmonic mapping, bounded radius rotation, distortion theorem, growth theorem and radius of starlikeness.

Introduction

Let $\mathcal A$ be the class of functions in the open unit disc $\mathbb D$ that are normalized with h(0)=0, h'(0)=1, then a function $h(z)\in\mathcal{A}$ is called convex or starlike if it maps $\mathbb D$ onto a convex or starlike region, respectively. Corresponding classes are denoted by $\mathcal C$ and S^* . It is well known that $\mathcal C\subset S^*$, that both are subclasses of the univalent functions and have the following analytical representations.

$$h(z) \in \mathcal{C} \iff Re\left(1 + z\frac{h''(z)}{h'(z)}\right) > 0, \quad z \in \mathbb{D}$$
 (1)

and

$$h(z) \in S^* \iff Re\left(z\frac{h'(z)}{h(z)}\right) > 0, \quad z \in \mathbb{D}$$
 (2)

More on these class can be found in [2]. Let h(z) be an element of A. If there is a function s(z) in C such that

$$Re\left(\frac{h'(z)}{s'(z)}\right) > 0, \quad z \in \mathbb{D}$$
 (3)

then h(z) is called close-to-convex function in $\mathbb D$ and the class of such functions is denoted by CC.

Orresponding Author* $2010\ \overrightarrow{AMS}\ Mathematics\ Subject\ Classification: 30{\rm C}45$