<html>
  <head>

    <meta http-equiv="content-type" content="text/html; charset=utf-8">
  </head>
  <body bgcolor="#FFFFFF" text="#000000">
    Değerli Liste Üyeleri, detayları aşağıda verilen seminerlere sizleri
    davet etmek isteriz.  İyi çalışmalar,<br>
    <br>
    kağan<br>
    <br>
    <div class="moz-forward-container"><br>
      <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      <div dir="auto" style="word-wrap: break-word; -webkit-nbsp-mode:
        space; line-break: after-white-space;" class="">
        <div class="gmail-"><b class="gmail-">MATHEMATICS COLLOQUIA</b></div>
        <div class="gmail-"><b class="gmail-"><br class="gmail-">
          </b></div>
        <div class="gmail-">You are cordially invited to attend <b
            class="gmail-">two</b> colloquia this week given by Nurdagül
          Anbar (RICAM, Austria) on <b class="gmail-">Wednesday, 6
            December 2017, in FENS-G055 at 11 am</b>, and by John
          Sheekey (UCD, Ireland) on <b class="gmail-">Thursday, 7
            December 2017, in FENS-L063 </b><b class="gmail-">at 11 am.</b></div>
        <div class="gmail-"><br class="gmail-">
        </div>
        <div class="gmail-">
          <div class="MsoNormal" style="margin: 0cm 0cm 0.0001pt;
            font-size: 12pt; font-family: "Times New Roman",
            serif; text-align: center;" align="center"><span
              class="gmail-" style="font-family: Arial, sans-serif;">
              <hr class="gmail-" align="center" size="2" width="100%"></span></div>
          <div class="gmail-" style="margin: 0cm 0cm 0.0001pt;"><b
              class="gmail-">Nurdagül Anbar</b></div>
          <div class="gmail-" style="margin: 0cm 0cm 0.0001pt;"><br
              class="gmail-">
          </div>
          <div class="gmail-" style="margin: 0cm 0cm 0.0001pt;">Title:
            Modified planar functions, bent<span style="vertical-align:
              -2pt;" class="">4</span> functions and their relative
            difference sets</div>
          <div class="gmail-" style="margin: 0cm 0cm 0.0001pt;"><span
              class="gmail-" style="font-size: 12.800000190734863px;"><br
                class="">
            </span></div>
          <div class="gmail-" style="margin: 0cm 0cm 0.0001pt;">Abstract: Modified
            planar functions are introduced to describe (2<span
              style="vertical-align: 4pt;" class="">n</span>,2<span
              style="vertical-align: 4pt;" class="">n</span>,2<span
              style="vertical-align: 4pt;" class="">n</span>,1) relative
            difference sets (RDS) R as a graph of a function on the
            finite field F<span style="vertical-align: -2pt;" class="">2</span><span
              style="vertical-align: 1pt;" class="">n.</span>  These are
            analogs of planar functions in odd characteristic q to
            describe (q<span style="vertical-align: 4pt;" class="">n</span>,
            q<span style="vertical-align: 4pt;" class="">n</span>, q<span
              style="vertical-align: 4pt;" class="">n</span>, 1) RDSs.
            We point out that the projections of R are (2<span
              style="vertical-align: 4pt;" class="">n</span>, 2, 2<span
              style="vertical-align: 4pt;" class="">n</span>, 2<span
              style="vertical-align: 4pt;" class="">n</span><span
              style="vertical-align: 4pt;" class="">−</span><span
              style="vertical-align: 4pt;" class="">1</span>) RDS that
            can be described by bent<span style="vertical-align: -2pt;"
              class="">4</span> functions, and we investigate the
            equivalence of their relative difference sets. In
            particular, we show that two extended affine equivalent bent
            functions may give rise to bent<span style="vertical-align:
              -2pt;" class="">4</span> functions whose corresponding
            RDSs are inequivalent.</div>
          <div class="gmail-" style="margin: 0cm 0cm 0.0001pt;"><span
              class="gmail-" style="font-size: small;"> </span></div>
        </div>
        <div class="gmail-">
          <div class="gmail-" style="margin: 0cm 0cm 0.0001pt;"><br
              class="gmail-">
          </div>
        </div>
        <div class="gmail-">
          <div class="MsoNormal" style="margin: 0cm 0cm 0.0001pt;
            font-size: 12pt; font-family: "Times New Roman",
            serif; text-align: center;" align="center"><span
              class="gmail-" style="font-family: Arial, sans-serif;">
              <hr class="gmail-" align="center" size="2" width="100%"></span></div>
          <div class="gmail-" style="margin: 0cm 0cm 0.0001pt;"><br
              class="gmail-">
          </div>
          <div class="gmail-" style="margin: 0cm 0cm 0.0001pt;"><br
              class="gmail-">
          </div>
          <div class="gmail-" style="margin: 0cm 0cm 0.0001pt;">
            <div class="gmail-">
              <div class="gmail-" style="margin: 0cm 0cm 0.0001pt;"><b
                  class="gmail-">John Sheekey</b></div>
              <div class="gmail-" style="margin: 0cm 0cm 0.0001pt;"><br
                  class="gmail-">
              </div>
              <div class="gmail-" style="margin: 0cm 0cm 0.0001pt;">Title: Algebraic
                constructions of semifields and maximum rank distance
                codes</div>
              <div class="gmail-" style="margin: 0cm 0cm 0.0001pt;"><span
                  class="gmail-" style="font-size:
                  12.800000190734863px;"> </span></div>
              <div class="gmail-" style="margin: 0cm 0cm 0.0001pt;">Abstract: Rank-metric
                codes are codes consisting of matrices, with the
                distance between two matrices being the rank of their
                difference. Codes with maximum size for a fixed minimum
                distance are called Maximum Rank Distance (MRD) codes.
                These have received increased attention in recent years,
                in part due to their applications in Random Linear
                Network Coding.</div>
              <br class="">
              <span class="">(Finite) semifields are nonassociative
                division algebras over a field. Existence of non-trivial
                examples was established by Dickson in 1906. They have
                many connections with interesting objects in finite
                geometry, such as projective planes, spreads, flocks.
                The number of equivalence classes of semifields remains
                an open problem. By considering the maps defined by
                multiplication, there is a correspondence between
                semifields and MRD codes of a certain type.</span><br
                class="">
              <br class="">
              <span class="">In this talk we will review the known
                constructions for semifields and MRD codes, focusing in
                particular on those constructed using linearized
                polynomials and skew-polynomial rings. We will introduce
                a new family, which contains new examples of semifields
                and MRD codes, and incorporates previously distinct
                constructions into one family</span><span class=""
                style="font-size: 12.8px;">.</span>
              <div class="gmail-page" title="Page 1">
                <div class="gmail-layoutArea">
                  <div class="gmail-column">
                    <p class="gmail-"><span class="gmail-"
                        style="font-size: 10pt; font-family:
                        NimbusRomNo9L;"> <br class="gmail-">
                      </span></p>
                  </div>
                </div>
              </div>
            </div>
            <div class="gmail-">
              <div class="MsoNormal" style="margin: 0cm 0cm 0.0001pt;
                font-size: 12pt; font-family: "Times New
                Roman", serif; text-align: center;" align="center"><span
                  class="gmail-" style="font-family: Arial, sans-serif;">
                  <hr class="gmail-" align="center" size="2"
                    width="100%"></span></div>
              <div class="gmail-" style="margin: 0cm 0cm 0.0001pt;"><br
                  class="gmail-">
              </div>
            </div>
          </div>
          <div class="gmail-" style="margin: 0cm 0cm 0.0001pt;"><br
              class="gmail-">
          </div>
          <div class="gmail-" style="margin: 0cm 0cm 0.0001pt;">Kind
            regards,</div>
          <div class="gmail-" style="margin: 0cm 0cm 0.0001pt;"><br
              class="gmail-">
          </div>
          <div class="gmail-" style="margin: 0cm 0cm 0.0001pt;">Yasemin </div>
          <div class="gmail-" style="margin: 0cm 0cm 0.0001pt;"><br
              class="">
          </div>
          <div class="gmail-" style="margin: 0cm 0cm 0.0001pt;"><br>
            <br>
            p.s. Sabancı Üniv kampüsüne ulaşım için <a
              class="moz-txt-link-freetext"
              href="http://www.sabanciuniv.edu/tr/ulasim/ring-sefer-saatleri">http://www.sabanciuniv.edu/tr/ulasim/ring-sefer-saatleri</a>
            adresine bakınız.<br>
            <br class="">
          </div>
        </div>
      </div>
    </div>
  </body>
</html>