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Abstract

In his dissertation thesis [1], the author proved a Weitzenbock formula on complex manifolds,
which involves the ∂−Hodge Laplacian ∆H , the Bochner Laplacian of the Levi-Civita connection ∆R,
and another Laplacian we construct, ∆K , that is related to the Lefschetz operator and ∂ operator
such that for any (p, q)−form, ∆K + ∆H − 2∆R = F (R)+"1st order quadratic terms" where F (R) :
Ep,q → Ep,q is a curvature operator [8], [6]. This generalizes a Weitzenbock formula of H. H. Wu on
Kähler manifolds such that ∆H − ∆R = F (R) in [11]. Under certain conditions, the author proves
that this Weitzenbock formula provides vanishing theorems for the Dolbeault cohomology groups of
complex differential (p, q)−forms and obtains information about the Hodge numbers of the manifold,
hp,q, in particular, the geometric genus, pg, and arithmetic genus, pa, and irregularity, q, of a compact
complex manifold [7], [2]. Furthermore, the author uses the main vanishing theorem to obtain the
Euler characteristic of the manifold χ (M) to show that the Hopf Conjecture [9] holds for a compact
complex manifold with nonnegative sectional, holomorphic bisectional and isotropic curvature under
certain extra conditions for (p, q)−forms [10], [3]. Finally, an earlier result of A. Gray states that a
hypothetical integrable almost complex structure on the 6-sphere, S6, has to satisfy h0,1

(
S6
)
> 0

[5]. Johnson and the author applies the main vanishing theorem in [4] for (0, 1)−forms to show that
h0,1

(
S6
)

= 0 and thus, under certain additional conditions S6 can not admit an integrable almost
complex structure.
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