

Dokuz Eylül University Department of Mathematics

GENERAL SEMINAR

On the Tractability of UN/SATISFIABILITY

Speaker: PROF. DR. LATIF SALUM Dokuz Eylül University Department of Industrial Engineering

Date: FRIDAY, OCTOBER 19, 2018

Time: 13.00 - 14.30

Place: SEMINAR ROOM B206, DEPARTMENT OF MATHEMATICS, DOKUZ EYLÜL UNIVERSITY

Absract

This paper attacks the **P** vs **NP** problem by means of one-in-three SAT, also known as exactly-1 3SAT (X3SAT). Clauses C_k , an exactly-1 disjunction \odot of literals, comprise any X3SAT formula, $\phi = \bigwedge C_k$. The assignment $\phi(r_j) := r_j \land \phi$ denotes that r_j is true, and reduces by means of \odot any $C_k = (r_j \odot \bar{r}_i \odot r_u)$ in $\phi(r_j)$ into $\psi_k = (r_j \land r_i \land \bar{r}_u)$ in $\psi(r_j)$. Thus, $\phi(r_j) := r_j \land \phi$ is transformed into $\phi(r_j) = \psi(r_j) \land \phi'(r_j)$ such that $\psi(r_j) = \bigwedge \psi_k$ and $\phi'(r_j) = \bigwedge C_{k'}$, and that $\psi(r_j)$ and $\phi'(r_j)$ are disjoint. If $\nvDash \psi(r_j)$, then $\nvDash \phi(r_j)$, and r_j is removed from ϕ . Note that it is trivial to verify if $\nvDash \psi(r_j)$, since $\nvDash \psi(r_j)$ iff $\psi(r_j)$ includes some $r_i \land \bar{r}_i$, and that $\nvDash \psi(r_j)$, sufficient for $\nvDash \phi(r_j)$, is necessary also, specified in the sequel. $\psi(r_i)$ is true for all r_i when every r_j is removed if $\nvDash \psi(r_j)$. Also, $\psi(r_i) \models \psi(r_i|r_j)$. Hence, $\psi(r_i|r_j)$ is true for all r_i in $\phi'(r_j)$, and $\phi'(r_j)$ is satisfiable. Thus, any X3SAT formula $\phi(r_i)$ reduces to a conjunction of literals $\psi(r_i)$. Therefore, it is tractable via $\psi(r_i)$ to verify unsatisfiability of $\phi(r_i)$, hence to verify satisfiability of ϕ . A satisfiable assignment is then constructed; $\psi(r_{i_0}) \land \psi(r_{i_1}|r_{i_0}) \land \cdots \land \psi(r_{i_n}|r_{i_m}) = \phi$. It takes $O(n^3)$. Therefore, **P** = **NP**.