<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"><head><meta http-equiv=Content-Type content="text/html; charset=iso-8859-9"><meta name=Generator content="Microsoft Word 15 (filtered medium)"><style><!--
/* Font Definitions */
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0cm;
        margin-bottom:.0001pt;
        font-size:11.0pt;
        font-family:"Calibri",sans-serif;
        mso-fareast-language:EN-US;}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:#0563C1;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:#954F72;
        text-decoration:underline;}
p.MsoPlainText, li.MsoPlainText, div.MsoPlainText
        {mso-style-priority:99;
        mso-style-link:"Plain Text Char";
        margin:0cm;
        margin-bottom:.0001pt;
        font-size:11.0pt;
        font-family:"Calibri",sans-serif;
        mso-fareast-language:EN-US;}
span.EmailStyle17
        {mso-style-type:personal-compose;
        font-family:"Calibri",sans-serif;
        color:windowtext;}
span.PlainTextChar
        {mso-style-name:"Plain Text Char";
        mso-style-priority:99;
        mso-style-link:"Plain Text";
        font-family:"Calibri",sans-serif;}
.MsoChpDefault
        {mso-style-type:export-only;
        font-family:"Calibri",sans-serif;
        mso-fareast-language:EN-US;}
@page WordSection1
        {size:612.0pt 792.0pt;
        margin:70.85pt 70.85pt 70.85pt 70.85pt;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]--></head><body lang=TR link="#0563C1" vlink="#954F72"><div class=WordSection1><p class=MsoPlainText>Değerli liste üyeleri, <o:p></o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText>Bilkent Matematik Seminerleri kapsamında 22 Ekim 2018’de iki konuşma yer almaktadır:<o:p></o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText>10:40 Cebir Semineri: Baran Zadeoğlu (Bilkent) "The replacement property for finite groups"<o:p></o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText>Özet: There is an ongoing effort to create a theory for groups and their generating sequences analogous to vector spaces and their basis. In this framework, one can define a generalized replacement property that applies to finite groups. Even though this property does not hold in general for groups, it does hold for large classes of groups, such as nilpotent groups. This talk aims to give overlay some of the methods currently known to investigate whether the replacement property holds or not. The topic of generating sets of finite groups, in general, are understudied and has many open research problems. The main references for this talk are not yet published but will be public on arxiv in the following months, under the authorship of Dan Collins. At this moment, some indirect references are: A. Lucchini. Finite soluble groups satisfying the replacement property, 2017 Dan Collins. Generating Sequences of Finite groups, Senior Thesis, 2010<o:p></o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText>13:40 Topoloji Semineri: Matthew Gelvin (Bilkent) "(Co)homology as a functor and the transfer map"<o:p></o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText>Özet: In this talk we will begin exploring the relationship between the (co)homology of different groups. We will see that a group map f:G —> G' induces a covariant map f_*: H_*(G) —> H_*(G') and a contravariant map f^*: H^*(G’) —> H^*(G). In the case that G is a subgroup of G' and f is the inclusion, we will also discuss a "wrong-way" transfer map, having the opposite variance of what would be expected. Time permitting, we will end by drawing a connection to the group-theoretic notion of transfer.<o:p></o:p></p><p class=MsoPlainText>*In this semester, we follow Brown's Cohomology of Groups which can be downloaded from <a href="https://www.springer.com/gp/book/9780387906881">https://www.springer.com/gp/book/9780387906881</a>.<o:p></o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText>Konuşmalar Matematik Bölümü Seminer odasında (SA-141) yapılacak ve sonrasında çay-kurabiye ikramı olacaktır. İlgilenen herkes davetlidir. <o:p></o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText>Bilkent Matematik <o:p></o:p></p><p class=MsoNormal><o:p> </o:p></p></div></body></html>