<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"><head><meta http-equiv=Content-Type content="text/html; charset=iso-8859-9"><meta name=Generator content="Microsoft Word 15 (filtered medium)"><style><!--
/* Font Definitions */
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0cm;
margin-bottom:.0001pt;
font-size:11.0pt;
font-family:"Calibri",sans-serif;
mso-fareast-language:EN-US;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:#0563C1;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{mso-style-priority:99;
color:#954F72;
text-decoration:underline;}
p.MsoPlainText, li.MsoPlainText, div.MsoPlainText
{mso-style-priority:99;
mso-style-link:"Plain Text Char";
margin:0cm;
margin-bottom:.0001pt;
font-size:11.0pt;
font-family:"Calibri",sans-serif;
mso-fareast-language:EN-US;}
span.PlainTextChar
{mso-style-name:"Plain Text Char";
mso-style-priority:99;
mso-style-link:"Plain Text";
font-family:"Calibri",sans-serif;}
p.Default, li.Default, div.Default
{mso-style-name:Default;
margin:0cm;
margin-bottom:.0001pt;
text-autospace:none;
font-size:12.0pt;
font-family:"Arial",sans-serif;
color:black;}
span.EmailStyle20
{mso-style-type:personal;
font-family:"Calibri",sans-serif;
color:windowtext;}
span.EmailStyle21
{mso-style-type:personal;
font-family:"Calibri",sans-serif;
color:#1F497D;}
span.EmailStyle22
{mso-style-type:personal-reply;
font-family:"Calibri",sans-serif;
color:#1F497D;}
.MsoChpDefault
{mso-style-type:export-only;
font-size:10.0pt;}
@page WordSection1
{size:612.0pt 792.0pt;
margin:70.85pt 70.85pt 70.85pt 70.85pt;}
div.WordSection1
{page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]--></head><body lang=TR link="#0563C1" vlink="#954F72"><div class=WordSection1><p class=MsoPlainText>Değerli liste üyeleri, <o:p></o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText>Bilkent Matematik Bölümü Cebir Seminerleri kapsamında 5 Kasım’da Laurence Barker konuşmacı olacaktır. <o:p></o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText>Laurence Barker (Bilkent Üniversitesi) <o:p></o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText>"An introduction to fusion systems, Alperin's Weight Conjecture, Linckelmann's Gluing Conjecture, part 1" <o:p></o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText>Özet: One aim of p-local finite group theory, arguably, is to get rid of the particular arbitrary famous finite group G and to retain only general p-local structure, perhaps partially expressed though categories whose objects are to be finite p-groups. In plain group theory, we consider the $p$-subgroups and the transports between them effected by conjugations. Sylow's Theorem allows us to localize, reducing to a consideration of morphisms between subgroups of a fixed Sylow p-subgroup. In block theory, the p-subgroups are replaced by the more general notion of a Brauer pair. Applying an analogue of Sylow's Theorem, the role of the Sylow p-subgroups is performed by p-subgroups called the defect groups. We can reduce to a category called the fusion system, whose objects are the subgroups of the defect group.<o:p></o:p></p><p class=MsoPlainText>Alperin's Fusion Theorem motivates a confinement of attention to only those objects that are called centric.<o:p></o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText>But the invariants appearing in Alperin's Conjecture are not invariants of the fusion system. After Kuelshammer and Puig, we capture the desired local information by assigning, to each centric object, a twist of the automorphism group over the unit group of the coefficient field, we mean, a central extension that is well-defined up to canonical isomorphism. Near the end of part 1 or the start of part 2, we shall illustrate the centric fusion system and its twists by means of an illuminating example, the Sylow-defect p-blocks of SL(3, p), where the prime p is congruent to<span style='color:#1F497D'> </span>1 modulo 3.<span style='color:#1F497D'><o:p></o:p></span></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText>Tarih: 5 Kasım 2018 Pazartesi, 10:40-11:50<o:p></o:p></p><p class=MsoPlainText>Bilkent Matematik Bölümü Seminer Odası SA - 141 Konuşma öncesinde çay-kurabiye ikramı yapılacaktır. <o:p></o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText>İlgilenen herkes davetlidir. <o:p></o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoPlainText>Bilkent Üniversitesi Matematik Bölümü<o:p></o:p></p><p class=MsoPlainText><a href="https://twitter.com/Bilkent_math">https://twitter.com/Bilkent_math</a><o:p></o:p></p><p class=MsoPlainText><o:p> </o:p></p><p class=MsoNormal><o:p> </o:p></p></div></body></html>